Welcome to Subscribe On Youtube

2096. Step-By-Step Directions From a Binary Tree Node to Another

Description

You are given the root of a binary tree with n nodes. Each node is uniquely assigned a value from 1 to n. You are also given an integer startValue representing the value of the start node s, and a different integer destValue representing the value of the destination node t.

Find the shortest path starting from node s and ending at node t. Generate step-by-step directions of such path as a string consisting of only the uppercase letters 'L', 'R', and 'U'. Each letter indicates a specific direction:

  • 'L' means to go from a node to its left child node.
  • 'R' means to go from a node to its right child node.
  • 'U' means to go from a node to its parent node.

Return the step-by-step directions of the shortest path from node s to node t.

 

Example 1:

Input: root = [5,1,2,3,null,6,4], startValue = 3, destValue = 6
Output: "UURL"
Explanation: The shortest path is: 3 → 1 → 5 → 2 → 6.

Example 2:

Input: root = [2,1], startValue = 2, destValue = 1
Output: "L"
Explanation: The shortest path is: 2 → 1.

 

Constraints:

  • The number of nodes in the tree is n.
  • 2 <= n <= 105
  • 1 <= Node.val <= n
  • All the values in the tree are unique.
  • 1 <= startValue, destValue <= n
  • startValue != destValue

Solutions

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        private Map<Integer, List<List<String>>> edges;
        private Set<Integer> visited;
        private String ans;
    
        public String getDirections(TreeNode root, int startValue, int destValue) {
            edges = new HashMap<>();
            visited = new HashSet<>();
            ans = null;
            traverse(root);
            dfs(startValue, destValue, new ArrayList<>());
            return ans;
        }
    
        private void traverse(TreeNode root) {
            if (root == null) {
                return;
            }
            if (root.left != null) {
                edges.computeIfAbsent(root.val, k -> new ArrayList<>())
                    .add(Arrays.asList(String.valueOf(root.left.val), "L"));
                edges.computeIfAbsent(root.left.val, k -> new ArrayList<>())
                    .add(Arrays.asList(String.valueOf(root.val), "U"));
            }
            if (root.right != null) {
                edges.computeIfAbsent(root.val, k -> new ArrayList<>())
                    .add(Arrays.asList(String.valueOf(root.right.val), "R"));
                edges.computeIfAbsent(root.right.val, k -> new ArrayList<>())
                    .add(Arrays.asList(String.valueOf(root.val), "U"));
            }
            traverse(root.left);
            traverse(root.right);
        }
    
        private void dfs(int start, int dest, List<String> t) {
            if (visited.contains(start)) {
                return;
            }
            if (start == dest) {
                if (ans == null || ans.length() > t.size()) {
                    ans = String.join("", t);
                }
                return;
            }
            visited.add(start);
            if (edges.containsKey(start)) {
                for (List<String> item : edges.get(start)) {
                    t.add(item.get(1));
                    dfs(Integer.parseInt(item.get(0)), dest, t);
                    t.remove(t.size() - 1);
                }
            }
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        unordered_map<int, vector<pair<int, char>>> edges;
        unordered_set<int> visited;
        string ans;
    
        string getDirections(TreeNode* root, int startValue, int destValue) {
            ans = "";
            traverse(root);
            string t = "";
            dfs(startValue, destValue, t);
            return ans;
        }
    
        void traverse(TreeNode* root) {
            if (!root) return;
            if (root->left) {
                edges[root->val].push_back({root->left->val, 'L'});
                edges[root->left->val].push_back({root->val, 'U'});
            }
            if (root->right) {
                edges[root->val].push_back({root->right->val, 'R'});
                edges[root->right->val].push_back({root->val, 'U'});
            }
            traverse(root->left);
            traverse(root->right);
        }
    
        void dfs(int start, int dest, string& t) {
            if (visited.count(start)) return;
            if (start == dest) {
                if (ans == "" || ans.size() > t.size()) ans = t;
                return;
            }
            visited.insert(start);
            if (edges.count(start)) {
                for (auto& item : edges[start]) {
                    t += item.second;
                    dfs(item.first, dest, t);
                    t.pop_back();
                }
            }
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def getDirections(
            self, root: Optional[TreeNode], startValue: int, destValue: int
        ) -> str:
            edges = defaultdict(list)
            ans = None
            visited = set()
    
            def traverse(root):
                if not root:
                    return
                if root.left:
                    edges[root.val].append([root.left.val, 'L'])
                    edges[root.left.val].append([root.val, 'U'])
                if root.right:
                    edges[root.val].append([root.right.val, 'R'])
                    edges[root.right.val].append([root.val, 'U'])
                traverse(root.left)
                traverse(root.right)
    
            def dfs(start, dest, t):
                nonlocal ans
                if start in visited:
                    return
                if start == dest:
                    if ans is None or len(ans) > len(t):
                        ans = ''.join(t)
                    return
                visited.add(start)
                for d, k in edges[start]:
                    t.append(k)
                    dfs(d, dest, t)
                    t.pop()
    
            traverse(root)
            dfs(startValue, destValue, [])
            return ans
    
    

All Problems

All Solutions