Welcome to Subscribe On Youtube

2059. Minimum Operations to Convert Number

Description

You are given a 0-indexed integer array nums containing distinct numbers, an integer start, and an integer goal. There is an integer x that is initially set to start, and you want to perform operations on x such that it is converted to goal. You can perform the following operation repeatedly on the number x:

If 0 <= x <= 1000, then for any index i in the array (0 <= i < nums.length), you can set x to any of the following:

  • x + nums[i]
  • x - nums[i]
  • x ^ nums[i] (bitwise-XOR)

Note that you can use each nums[i] any number of times in any order. Operations that set x to be out of the range 0 <= x <= 1000 are valid, but no more operations can be done afterward.

Return the minimum number of operations needed to convert x = start into goal, and -1 if it is not possible.

 

Example 1:

Input: nums = [2,4,12], start = 2, goal = 12
Output: 2
Explanation: We can go from 2 → 14 → 12 with the following 2 operations.
- 2 + 12 = 14
- 14 - 2 = 12

Example 2:

Input: nums = [3,5,7], start = 0, goal = -4
Output: 2
Explanation: We can go from 0 → 3 → -4 with the following 2 operations. 
- 0 + 3 = 3
- 3 - 7 = -4
Note that the last operation sets x out of the range 0 <= x <= 1000, which is valid.

Example 3:

Input: nums = [2,8,16], start = 0, goal = 1
Output: -1
Explanation: There is no way to convert 0 into 1.

 

Constraints:

  • 1 <= nums.length <= 1000
  • -109 <= nums[i], goal <= 109
  • 0 <= start <= 1000
  • start != goal
  • All the integers in nums are distinct.

Solutions

BFS.

  • class Solution {
        public int minimumOperations(int[] nums, int start, int goal) {
            IntBinaryOperator op1 = (x, y) -> x + y;
            IntBinaryOperator op2 = (x, y) -> x - y;
            IntBinaryOperator op3 = (x, y) -> x ^ y;
            IntBinaryOperator[] ops = {op1, op2, op3};
            boolean[] vis = new boolean[1001];
            Queue<int[]> queue = new ArrayDeque<>();
            queue.offer(new int[] {start, 0});
            while (!queue.isEmpty()) {
                int[] p = queue.poll();
                int x = p[0], step = p[1];
                for (int num : nums) {
                    for (IntBinaryOperator op : ops) {
                        int nx = op.applyAsInt(x, num);
                        if (nx == goal) {
                            return step + 1;
                        }
                        if (nx >= 0 && nx <= 1000 && !vis[nx]) {
                            queue.offer(new int[] {nx, step + 1});
                            vis[nx] = true;
                        }
                    }
                }
            }
            return -1;
        }
    }
    
  • class Solution {
    public:
        int minimumOperations(vector<int>& nums, int start, int goal) {
            using pii = pair<int, int>;
            vector<function<int(int, int)>> ops{
                [](int x, int y) { return x + y; },
                [](int x, int y) { return x - y; },
                [](int x, int y) { return x ^ y; },
            };
            vector<bool> vis(1001, false);
            queue<pii> q;
            q.push({start, 0});
            while (!q.empty()) {
                auto [x, step] = q.front();
                q.pop();
                for (int num : nums) {
                    for (auto op : ops) {
                        int nx = op(x, num);
                        if (nx == goal) {
                            return step + 1;
                        }
                        if (nx >= 0 && nx <= 1000 && !vis[nx]) {
                            q.push({nx, step + 1});
                            vis[nx] = true;
                        }
                    }
                }
            }
            return -1;
        }
    };
    
  • class Solution:
        def minimumOperations(self, nums: List[int], start: int, goal: int) -> int:
            op1 = lambda x, y: x + y
            op2 = lambda x, y: x - y
            op3 = lambda x, y: x ^ y
            ops = [op1, op2, op3]
            vis = [False] * 1001
            q = deque([(start, 0)])
            while q:
                x, step = q.popleft()
                for num in nums:
                    for op in ops:
                        nx = op(x, num)
                        if nx == goal:
                            return step + 1
                        if 0 <= nx <= 1000 and not vis[nx]:
                            q.append((nx, step + 1))
                            vis[nx] = True
            return -1
    
    
  • func minimumOperations(nums []int, start int, goal int) int {
    	type pair struct {
    		x    int
    		step int
    	}
    
    	ops := []func(int, int) int{
    		func(x, y int) int { return x + y },
    		func(x, y int) int { return x - y },
    		func(x, y int) int { return x ^ y },
    	}
    	vis := make([]bool, 1001)
    	q := []pair{ {start, 0} }
    
    	for len(q) > 0 {
    		x, step := q[0].x, q[0].step
    		q = q[1:]
    		for _, num := range nums {
    			for _, op := range ops {
    				nx := op(x, num)
    				if nx == goal {
    					return step + 1
    				}
    				if nx >= 0 && nx <= 1000 && !vis[nx] {
    					q = append(q, pair{nx, step + 1})
    					vis[nx] = true
    				}
    			}
    		}
    	}
    	return -1
    }
    
  • function minimumOperations(nums: number[], start: number, goal: number): number {
        const n = nums.length;
        const op1 = function (x: number, y: number): number {
            return x + y;
        };
        const op2 = function (x: number, y: number): number {
            return x - y;
        };
        const op3 = function (x: number, y: number): number {
            return x ^ y;
        };
        const ops = [op1, op2, op3];
        let vis = new Array(1001).fill(false);
        let quenue: Array<Array<number>> = [[start, 0]];
        vis[start] = true;
        while (quenue.length) {
            let [x, step] = quenue.shift();
            for (let i = 0; i < n; i++) {
                for (let j = 0; j < ops.length; j++) {
                    const nx = ops[j](x, nums[i]);
                    if (nx == goal) {
                        return step + 1;
                    }
                    if (nx >= 0 && nx <= 1000 && !vis[nx]) {
                        vis[nx] = true;
                        quenue.push([nx, step + 1]);
                    }
                }
            }
        }
        return -1;
    }
    
    

All Problems

All Solutions