Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/1855.html
1855. Maximum Distance Between a Pair of Values
Level
Medium
Description
You are given two non-increasing 0-indexed integer arrays nums1
and nums2
.
A pair of indices (i, j)
, where 0 <= i < nums1.length
and 0 <= j < nums2.length
, is valid if both i <= j
and nums1[i] <= nums2[j]
. The distance of the pair is j - i
.
Return the maximum distance of any valid pair (i, j)
. If there are no valid pairs, return 0
.
An array arr
is non-increasing if arr[i-1] >= arr[i]
for every 1 <= i < arr.length
.
Example 1:
Input: nums1 = [55,30,5,4,2], nums2 = [100,20,10,10,5]
Output: 2
Explanation: The valid pairs are (0,0), (2,2), (2,3), (2,4), (3,3), (3,4), and (4,4).
The maximum distance is 2 with pair (2,4).
Example 2:
Input: nums1 = [2,2,2], nums2 = [10,10,1]
Output: 1
Explanation: The valid pairs are (0,0), (0,1), and (1,1).
The maximum distance is 1 with pair (0,1).
Example 3:
Input: nums1 = [30,29,19,5], nums2 = [25,25,25,25,25]
Output: 2
Explanation: The valid pairs are (2,2), (2,3), (2,4), (3,3), and (3,4).
The maximum distance is 2 with pair (2,4).
Example 4:
Input: nums1 = [5,4], nums2 = [3,2]
Output: 0
Explanation: There are no valid pairs, so return 0.
Constraints:
1 <= nums1.length <= 10^5
1 <= nums2.length <= 10^5
1 <= nums1[i], nums2[j] <= 10^5
- Both
nums1
andnums2
are non-increasing.
Solution
Use two pointers. Loop over index2
from nums2.length - 1
to 0. For each index2
, find the smallest index1
such that nums1[index1] <= nums2[index2]
and calculate index2 - index1
as the distance. Since the distance is at least 0, if index1 > index2
, the distance is negative and will never exceed 0. Only the non-negative instances are stored to maintain the maximum distance.
-
class Solution { public int maxDistance(int[] nums1, int[] nums2) { int maxDistance = 0; int length1 = nums1.length, length2 = nums2.length; int index1 = length1 - 1, index2 = length2 - 1; while (index1 >= 0 && index2 >= 0) { while (index1 >= 0 && nums1[index1] <= nums2[index2]) { maxDistance = Math.max(maxDistance, index2 - index1); index1--; } index2--; } return maxDistance; } } ############ class Solution { public int maxDistance(int[] nums1, int[] nums2) { int m = nums1.length, n = nums2.length; int ans = 0; for (int i = 0, j = 0; i < m; ++i) { while (j < n && nums1[i] <= nums2[j]) { ++j; } ans = Math.max(ans, j - i - 1); } return ans; } }
-
// OJ: https://leetcode.com/problems/maximum-distance-between-a-pair-of-values/ // Time: O(NlogN) // Space: O(1) class Solution { public: int maxDistance(vector<int>& A, vector<int>& B) { int ans = 0; for (int i = 0; i < A.size(); ++i) { int j = upper_bound(begin(B), end(B), A[i], greater()) - begin(B); ans = max(ans, max(0, j - 1 - i)); } return ans; } };
-
class Solution: def maxDistance(self, nums1: List[int], nums2: List[int]) -> int: m, n = len(nums1), len(nums2) ans = i = j = 0 while i < m: while j < n and nums1[i] <= nums2[j]: j += 1 ans = max(ans, j - i - 1) i += 1 return ans ############ # 1855. Maximum Distance Between a Pair of Values # https://leetcode.com/problems/maximum-distance-between-a-pair-of-values/ class Solution: def maxDistance(self, nums1: List[int], nums2: List[int]) -> int: n1, n2 = len(nums1), len(nums2) res = 0 i = j = 0 while i < n1 or j < n2: if nums1[i] <= nums2[j]: res = max(res, j - i) if j < n2 - 1: j += 1 elif i < n1 - 1: i += 1 else: break else: if i < n1 - 1: i += 1 elif j < n2 - 1: j += 1 else: break return res
-
func maxDistance(nums1 []int, nums2 []int) int { m, n := len(nums1), len(nums2) ans := 0 for i, j := 0, 0; i < m; i++ { for j < n && nums1[i] <= nums2[j] { j++ } if ans < j-i-1 { ans = j - i - 1 } } return ans }
-
function maxDistance(nums1: number[], nums2: number[]): number { let ans = 0; const m = nums1.length; const n = nums2.length; for (let i = 0, j = 0; i < m; ++i) { while (j < n && nums1[i] <= nums2[j]) { j++; } ans = Math.max(ans, j - i - 1); } return ans; }
-
/** * @param {number[]} nums1 * @param {number[]} nums2 * @return {number} */ var maxDistance = function (nums1, nums2) { let ans = 0; const m = nums1.length; const n = nums2.length; for (let i = 0, j = 0; i < m; ++i) { while (j < n && nums1[i] <= nums2[j]) { j++; } ans = Math.max(ans, j - i - 1); } return ans; };
-
impl Solution { pub fn max_distance(nums1: Vec<i32>, nums2: Vec<i32>) -> i32 { let m = nums1.len(); let n = nums2.len(); let mut res = 0; let mut j = 0; for i in 0..m { while j < n && nums1[i] <= nums2[j] { j += 1 } res = res.max((j - i - 1) as i32) } res } }