Welcome to Subscribe On Youtube

2050. Parallel Courses III

Description

You are given an integer n, which indicates that there are n courses labeled from 1 to n. You are also given a 2D integer array relations where relations[j] = [prevCoursej, nextCoursej] denotes that course prevCoursej has to be completed before course nextCoursej (prerequisite relationship). Furthermore, you are given a 0-indexed integer array time where time[i] denotes how many months it takes to complete the (i+1)th course.

You must find the minimum number of months needed to complete all the courses following these rules:

  • You may start taking a course at any time if the prerequisites are met.
  • Any number of courses can be taken at the same time.

Return the minimum number of months needed to complete all the courses.

Note: The test cases are generated such that it is possible to complete every course (i.e., the graph is a directed acyclic graph).

 

Example 1:

Input: n = 3, relations = [[1,3],[2,3]], time = [3,2,5]
Output: 8
Explanation: The figure above represents the given graph and the time required to complete each course. 
We start course 1 and course 2 simultaneously at month 0.
Course 1 takes 3 months and course 2 takes 2 months to complete respectively.
Thus, the earliest time we can start course 3 is at month 3, and the total time required is 3 + 5 = 8 months.

Example 2:

Input: n = 5, relations = [[1,5],[2,5],[3,5],[3,4],[4,5]], time = [1,2,3,4,5]
Output: 12
Explanation: The figure above represents the given graph and the time required to complete each course.
You can start courses 1, 2, and 3 at month 0.
You can complete them after 1, 2, and 3 months respectively.
Course 4 can be taken only after course 3 is completed, i.e., after 3 months. It is completed after 3 + 4 = 7 months.
Course 5 can be taken only after courses 1, 2, 3, and 4 have been completed, i.e., after max(1,2,3,7) = 7 months.
Thus, the minimum time needed to complete all the courses is 7 + 5 = 12 months.

 

Constraints:

  • 1 <= n <= 5 * 104
  • 0 <= relations.length <= min(n * (n - 1) / 2, 5 * 104)
  • relations[j].length == 2
  • 1 <= prevCoursej, nextCoursej <= n
  • prevCoursej != nextCoursej
  • All the pairs [prevCoursej, nextCoursej] are unique.
  • time.length == n
  • 1 <= time[i] <= 104
  • The given graph is a directed acyclic graph.

Solutions

  • class Solution {
        public int minimumTime(int n, int[][] relations, int[] time) {
            List<Integer>[] g = new List[n];
            Arrays.setAll(g, k -> new ArrayList<>());
            int[] indeg = new int[n];
            for (int[] e : relations) {
                int a = e[0] - 1, b = e[1] - 1;
                g[a].add(b);
                ++indeg[b];
            }
            Deque<Integer> q = new ArrayDeque<>();
            int[] f = new int[n];
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                int v = indeg[i], t = time[i];
                if (v == 0) {
                    q.offer(i);
                    f[i] = t;
                    ans = Math.max(ans, t);
                }
            }
            while (!q.isEmpty()) {
                int i = q.pollFirst();
                for (int j : g[i]) {
                    f[j] = Math.max(f[j], f[i] + time[j]);
                    ans = Math.max(ans, f[j]);
                    if (--indeg[j] == 0) {
                        q.offer(j);
                    }
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int minimumTime(int n, vector<vector<int>>& relations, vector<int>& time) {
            vector<vector<int>> g(n);
            vector<int> indeg(n);
            for (auto& e : relations) {
                int a = e[0] - 1, b = e[1] - 1;
                g[a].push_back(b);
                ++indeg[b];
            }
            queue<int> q;
            vector<int> f(n);
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                int v = indeg[i], t = time[i];
                if (v == 0) {
                    q.push(i);
                    f[i] = t;
                    ans = max(ans, t);
                }
            }
            while (!q.empty()) {
                int i = q.front();
                q.pop();
                for (int j : g[i]) {
                    if (--indeg[j] == 0) {
                        q.push(j);
                    }
                    f[j] = max(f[j], f[i] + time[j]);
                    ans = max(ans, f[j]);
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def minimumTime(self, n: int, relations: List[List[int]], time: List[int]) -> int:
            g = defaultdict(list)
            indeg = [0] * n
            for a, b in relations:
                g[a - 1].append(b - 1)
                indeg[b - 1] += 1
            q = deque()
            f = [0] * n
            ans = 0
            for i, (v, t) in enumerate(zip(indeg, time)):
                if v == 0:
                    q.append(i)
                    f[i] = t
                    ans = max(ans, t)
            while q:
                i = q.popleft()
                for j in g[i]:
                    f[j] = max(f[j], f[i] + time[j])
                    ans = max(ans, f[j])
                    indeg[j] -= 1
                    if indeg[j] == 0:
                        q.append(j)
            return ans
    
    
  • func minimumTime(n int, relations [][]int, time []int) int {
    	g := make([][]int, n)
    	indeg := make([]int, n)
    	for _, e := range relations {
    		a, b := e[0]-1, e[1]-1
    		g[a] = append(g[a], b)
    		indeg[b]++
    	}
    	f := make([]int, n)
    	q := []int{}
    	ans := 0
    	for i, v := range indeg {
    		if v == 0 {
    			q = append(q, i)
    			f[i] = time[i]
    			ans = max(ans, time[i])
    		}
    	}
    	for len(q) > 0 {
    		i := q[0]
    		q = q[1:]
    		for _, j := range g[i] {
    			indeg[j]--
    			if indeg[j] == 0 {
    				q = append(q, j)
    			}
    			f[j] = max(f[j], f[i]+time[j])
    			ans = max(ans, f[j])
    		}
    	}
    	return ans
    }
    
  • function minimumTime(n: number, relations: number[][], time: number[]): number {
        const g: number[][] = Array(n)
            .fill(0)
            .map(() => []);
        const indeg: number[] = Array(n).fill(0);
        for (const [a, b] of relations) {
            g[a - 1].push(b - 1);
            ++indeg[b - 1];
        }
        const q: number[] = [];
        const f: number[] = Array(n).fill(0);
        let ans: number = 0;
        for (let i = 0; i < n; ++i) {
            if (indeg[i] === 0) {
                q.push(i);
                f[i] = time[i];
                ans = Math.max(ans, f[i]);
            }
        }
        while (q.length > 0) {
            const i = q.shift()!;
            for (const j of g[i]) {
                f[j] = Math.max(f[j], f[i] + time[j]);
                ans = Math.max(ans, f[j]);
                if (--indeg[j] === 0) {
                    q.push(j);
                }
            }
        }
        return ans;
    }
    
    

All Problems

All Solutions