Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/1846.html
1846. Maximum Element After Decreasing and Rearranging
Level
Medium
Description
You are given an array of positive integers arr
. Perform some operations (possibly none) on arr
so that it satisfies these conditions:
- The value of the first element in
arr
must be1
. - The absolute difference between any 2 adjacent elements must be less than or equal to
1
. In other words,abs(arr[i] - arr[i - 1]) <= 1
for eachi
where1 <= i < arr.length
(0-indexed).abs(x)
is the absolute value ofx
.
There are 2 types of operations that you can perform any number of times:
- Decrease the value of any element of
arr
to a smaller positive integer. - Rearrange the elements of
arr
to be in any order.
Return the maximum possible value of an element in arr
after performing the operations to satisfy the conditions.
Example 1:
Input: arr = [2,2,1,2,1]
Output: 2
Explanation:
We can satisfy the conditions by rearranging arr so it becomes [1,2,2,2,1].
The largest element in arr is 2.
Example 2:
Input: arr = [100,1,1000]
Output: 3
Explanation:
One possible way to satisfy the conditions is by doing the following:
- Rearrange arr so it becomes [1,100,1000].
- Decrease the value of the second element to 2.
- Decrease the value of the third element to 3.
Now arr = [1,2,3], which satisfies the conditions.
The largest element in arr is 3.
Example 3:
Input: arr = [1,2,3,4,5]
Output: 5
Explanation: The array already satisfies the conditions, and the largest element is 5.
Constraints:
1 <= arr.length <= 10^5
1 <= arr[i] <= 10^9
Solution
Sort arr
and let arr[0] = 1
. For 1 <= i < arr.length
, set arr[i]
to the minimum of arr[i]
and arr[i - 1] + 1
. Finally, return arr[arr.length - 1]
.
-
class Solution { public int maximumElementAfterDecrementingAndRearranging(int[] arr) { Arrays.sort(arr); int length = arr.length; arr[0] = 1; for (int i = 1; i < length; i++) arr[i] = Math.min(arr[i], arr[i - 1] + 1); return arr[length - 1]; } } ############ class Solution { public int maximumElementAfterDecrementingAndRearranging(int[] arr) { Arrays.sort(arr); arr[0] = 1; int ans = 1; for (int i = 1; i < arr.length; ++i) { int d = Math.max(0, arr[i] - arr[i - 1] - 1); arr[i] -= d; ans = Math.max(ans, arr[i]); } return ans; } }
-
// OJ: https://leetcode.com/problems/maximum-element-after-decreasing-and-rearranging/ // Time: O(NlogN) // Space: O(1) class Solution { public: int maximumElementAfterDecrementingAndRearranging(vector<int>& A) { sort(begin(A), end(A)); A[0] = 1; for (int i = 1; i < A.size(); ++i) { A[i] = min(A[i - 1] + 1, A[i]); } return A.back(); } };
-
class Solution: def maximumElementAfterDecrementingAndRearranging(self, arr: List[int]) -> int: arr.sort() arr[0] = 1 for i in range(1, len(arr)): d = max(0, arr[i] - arr[i - 1] - 1) arr[i] -= d return max(arr) ############ # 1846. Maximum Element After Decreasing and Rearranging # https://leetcode.com/problems/maximum-element-after-decreasing-and-rearranging/ class Solution: def maximumElementAfterDecrementingAndRearranging(self, arr: List[int]) -> int: n = len(arr) arr.sort() arr[0] = 1 for i in range(1, n): arr[i] = min(arr[i - 1] + 1, arr[i]) return max(arr)
-
func maximumElementAfterDecrementingAndRearranging(arr []int) int { sort.Ints(arr) ans := 1 arr[0] = 1 for i := 1; i < len(arr); i++ { d := max(0, arr[i]-arr[i-1]-1) arr[i] -= d ans = max(ans, arr[i]) } return ans } func max(a, b int) int { if a > b { return a } return b }
-
function maximumElementAfterDecrementingAndRearranging(arr: number[]): number { arr.sort((a, b) => a - b); arr[0] = 1; let ans = 1; for (let i = 1; i < arr.length; ++i) { const d = Math.max(0, arr[i] - arr[i - 1] - 1); arr[i] -= d; ans = Math.max(ans, arr[i]); } return ans; };
-
public class Solution { public int MaximumElementAfterDecrementingAndRearranging(int[] arr) { Array.Sort(arr); int n = arr.Length; arr[0] = 1; for (int i = 1; i < n; ++i) { arr[i] = Math.Min(arr[i], arr[i - 1] + 1); } return arr[n - 1]; } }