Welcome to Subscribe On Youtube

2031. Count Subarrays With More Ones Than Zeros

Description

You are given a binary array nums containing only the integers 0 and 1. Return the number of subarrays in nums that have more 1's than 0's. Since the answer may be very large, return it modulo 109 + 7.

A subarray is a contiguous sequence of elements within an array.

 

Example 1:

Input: nums = [0,1,1,0,1]
Output: 9
Explanation:
The subarrays of size 1 that have more ones than zeros are: [1], [1], [1]
The subarrays of size 2 that have more ones than zeros are: [1,1]
The subarrays of size 3 that have more ones than zeros are: [0,1,1], [1,1,0], [1,0,1]
The subarrays of size 4 that have more ones than zeros are: [1,1,0,1]
The subarrays of size 5 that have more ones than zeros are: [0,1,1,0,1]

Example 2:

Input: nums = [0]
Output: 0
Explanation:
No subarrays have more ones than zeros.

Example 3:

Input: nums = [1]
Output: 1
Explanation:
The subarrays of size 1 that have more ones than zeros are: [1]

 

Constraints:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 1

Solutions

Solution 1: Prefix Sum + Binary Indexed Tree

The problem requires us to count the number of subarrays where the count of $1$ is greater than the count of $0$. If we treat $0$ in the array as $-1$, then the problem becomes counting the number of subarrays where the sum of elements is greater than $0$.

To calculate the sum of elements in a subarray, we can use the prefix sum. To count the number of subarrays where the sum of elements is greater than $0$, we can use a binary indexed tree to maintain the occurrence count of each prefix sum. Initially, the occurrence count of the prefix sum $0$ is $1$.

Next, we traverse the array $nums$, use variable $s$ to record the current prefix sum, and use variable $ans$ to record the answer. For each position $i$, we update the prefix sum $s$, then query the occurrence count of the prefix sum in the range $[0, s)$ in the binary indexed tree, add it to $ans$, and then update the occurrence count of $s$ in the binary indexed tree.

Finally, return $ans$.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array $nums$.

  • class BinaryIndexedTree {
        private int n;
        private int[] c;
    
        public BinaryIndexedTree(int n) {
            this.n = n;
            c = new int[n + 1];
        }
    
        public void update(int x, int v) {
            for (; x <= n; x += x & -x) {
                c[x] += v;
            }
        }
    
        public int query(int x) {
            int s = 0;
            for (; x > 0; x -= x & -x) {
                s += c[x];
            }
            return s;
        }
    }
    
    class Solution {
        public int subarraysWithMoreZerosThanOnes(int[] nums) {
            int n = nums.length;
            int base = n + 1;
            BinaryIndexedTree tree = new BinaryIndexedTree(n + base);
            tree.update(base, 1);
            final int mod = (int) 1e9 + 7;
            int ans = 0, s = 0;
            for (int x : nums) {
                s += x == 0 ? -1 : 1;
                ans += tree.query(s - 1 + base);
                ans %= mod;
                tree.update(s + base, 1);
            }
            return ans;
        }
    }
    
  • class BinaryIndexedTree {
    private:
        int n;
        vector<int> c;
    
    public:
        BinaryIndexedTree(int n)
            : n(n)
            , c(n + 1, 0) {}
    
        void update(int x, int v) {
            for (; x <= n; x += x & -x) {
                c[x] += v;
            }
        }
    
        int query(int x) {
            int s = 0;
            for (; x > 0; x -= x & -x) {
                s += c[x];
            }
            return s;
        }
    };
    
    class Solution {
    public:
        int subarraysWithMoreZerosThanOnes(vector<int>& nums) {
            int n = nums.size();
            int base = n + 1;
            BinaryIndexedTree tree(n + base);
            tree.update(base, 1);
            const int mod = 1e9 + 7;
            int ans = 0, s = 0;
            for (int x : nums) {
                s += (x == 0) ? -1 : 1;
                ans += tree.query(s - 1 + base);
                ans %= mod;
                tree.update(s + base, 1);
            }
            return ans;
        }
    };
    
  • class BinaryIndexedTree:
        __slots__ = ["n", "c"]
    
        def __init__(self, n: int):
            self.n = n
            self.c = [0] * (n + 1)
    
        def update(self, x: int, v: int):
            while x <= self.n:
                self.c[x] += v
                x += x & -x
    
        def query(self, x: int) -> int:
            s = 0
            while x:
                s += self.c[x]
                x -= x & -x
            return s
    
    
    class Solution:
        def subarraysWithMoreZerosThanOnes(self, nums: List[int]) -> int:
            n = len(nums)
            base = n + 1
            tree = BinaryIndexedTree(n + base)
            tree.update(base, 1)
            mod = 10**9 + 7
            ans = s = 0
            for x in nums:
                s += x or -1
                ans += tree.query(s - 1 + base)
                ans %= mod
                tree.update(s + base, 1)
            return ans
    
    
  • type BinaryIndexedTree struct {
    	n int
    	c []int
    }
    
    func newBinaryIndexedTree(n int) *BinaryIndexedTree {
    	return &BinaryIndexedTree{n: n, c: make([]int, n+1)}
    }
    
    func (bit *BinaryIndexedTree) update(x, v int) {
    	for ; x <= bit.n; x += x & -x {
    		bit.c[x] += v
    	}
    }
    
    func (bit *BinaryIndexedTree) query(x int) (s int) {
    	for ; x > 0; x -= x & -x {
    		s += bit.c[x]
    	}
    	return
    }
    
    func subarraysWithMoreZerosThanOnes(nums []int) (ans int) {
    	n := len(nums)
    	base := n + 1
    	tree := newBinaryIndexedTree(n + base)
    	tree.update(base, 1)
    	const mod = int(1e9) + 7
    	s := 0
    	for _, x := range nums {
    		if x == 0 {
    			s--
    		} else {
    			s++
    		}
    		ans += tree.query(s - 1 + base)
    		ans %= mod
    		tree.update(s+base, 1)
    	}
    	return
    }
    
  • class BinaryIndexedTree {
        private n: number;
        private c: number[];
    
        constructor(n: number) {
            this.n = n;
            this.c = Array(n + 1).fill(0);
        }
    
        update(x: number, v: number): void {
            for (; x <= this.n; x += x & -x) {
                this.c[x] += v;
            }
        }
    
        query(x: number): number {
            let s = 0;
            for (; x > 0; x -= x & -x) {
                s += this.c[x];
            }
            return s;
        }
    }
    
    function subarraysWithMoreZerosThanOnes(nums: number[]): number {
        const n: number = nums.length;
        const base: number = n + 1;
        const tree: BinaryIndexedTree = new BinaryIndexedTree(n + base);
        tree.update(base, 1);
        const mod: number = 1e9 + 7;
        let ans: number = 0;
        let s: number = 0;
        for (const x of nums) {
            s += x || -1;
            ans += tree.query(s - 1 + base);
            ans %= mod;
            tree.update(s + base, 1);
        }
        return ans;
    }
    
    

All Problems

All Solutions