Welcome to Subscribe On Youtube
2006. Count Number of Pairs With Absolute Difference K
Description
Given an integer array nums
and an integer k
, return the number of pairs (i, j)
where i < j
such that |nums[i] - nums[j]| == k
.
The value of |x|
is defined as:
x
ifx >= 0
.-x
ifx < 0
.
Example 1:
Input: nums = [1,2,2,1], k = 1 Output: 4 Explanation: The pairs with an absolute difference of 1 are: - [1,2,2,1] - [1,2,2,1] - [1,2,2,1] - [1,2,2,1]
Example 2:
Input: nums = [1,3], k = 3 Output: 0 Explanation: There are no pairs with an absolute difference of 3.
Example 3:
Input: nums = [3,2,1,5,4], k = 2 Output: 3 Explanation: The pairs with an absolute difference of 2 are: - [3,2,1,5,4] - [3,2,1,5,4] - [3,2,1,5,4]
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 100
1 <= k <= 99
Solutions
Solution 1: Brute Force Enumeration
We notice that the length of the array $nums$ does not exceed $200$, so we can enumerate all pairs $(i, j)$, where $i < j$, and check if $ | nums[i] - nums[j] | $ equals $k$. If it does, we increment the answer by one. |
Finally, we return the answer.
The time complexity is $O(n^2)$, and the space complexity is $O(1)$. Here, $n$ is the length of the array $nums$.
Solution 2: Hash Table or Array
We can use a hash table or array to record the occurrence count of each number in the array $nums$. Then, we enumerate each number $x$ in the array $nums$, and check if $x + k$ and $x - k$ are in the array $nums$. If they are, we increment the answer by the sum of the occurrence counts of $x + k$ and $x - k$.
Finally, we return the answer.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.
-
class Solution { public int countKDifference(int[] nums, int k) { int ans = 0; for (int i = 0, n = nums.length; i < n; ++i) { for (int j = i + 1; j < n; ++j) { if (Math.abs(nums[i] - nums[j]) == k) { ++ans; } } } return ans; } }
-
class Solution { public: int countKDifference(vector<int>& nums, int k) { int n = nums.size(); int ans = 0; for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { ans += abs(nums[i] - nums[j]) == k; } } return ans; } };
-
class Solution: def countKDifference(self, nums: List[int], k: int) -> int: n = len(nums) return sum( abs(nums[i] - nums[j]) == k for i in range(n) for j in range(i + 1, n) )
-
func countKDifference(nums []int, k int) int { n := len(nums) ans := 0 for i := 0; i < n; i++ { for j := i + 1; j < n; j++ { if abs(nums[i]-nums[j]) == k { ans++ } } } return ans } func abs(x int) int { if x > 0 { return x } return -x }
-
function countKDifference(nums: number[], k: number): number { let ans = 0; let cnt = new Map(); for (let num of nums) { ans += (cnt.get(num - k) || 0) + (cnt.get(num + k) || 0); cnt.set(num, (cnt.get(num) || 0) + 1); } return ans; }
-
impl Solution { pub fn count_k_difference(nums: Vec<i32>, k: i32) -> i32 { let mut res = 0; let n = nums.len(); for i in 0..n - 1 { for j in i..n { if (nums[i] - nums[j]).abs() == k { res += 1; } } } res } }