Welcome to Subscribe On Youtube

2006. Count Number of Pairs With Absolute Difference K

Description

Given an integer array nums and an integer k, return the number of pairs (i, j) where i < j such that |nums[i] - nums[j]| == k.

The value of |x| is defined as:

  • x if x >= 0.
  • -x if x < 0.

 

Example 1:

Input: nums = [1,2,2,1], k = 1
Output: 4
Explanation: The pairs with an absolute difference of 1 are:
- [1,2,2,1]
- [1,2,2,1]
- [1,2,2,1]
- [1,2,2,1]

Example 2:

Input: nums = [1,3], k = 3
Output: 0
Explanation: There are no pairs with an absolute difference of 3.

Example 3:

Input: nums = [3,2,1,5,4], k = 2
Output: 3
Explanation: The pairs with an absolute difference of 2 are:
- [3,2,1,5,4]
- [3,2,1,5,4]
- [3,2,1,5,4]

 

Constraints:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100
  • 1 <= k <= 99

Solutions

Solution 1: Brute Force Enumeration

We notice that the length of the array $nums$ does not exceed $200$, so we can enumerate all pairs $(i, j)$, where $i < j$, and check if $ nums[i] - nums[j] $ equals $k$. If it does, we increment the answer by one.

Finally, we return the answer.

The time complexity is $O(n^2)$, and the space complexity is $O(1)$. Here, $n$ is the length of the array $nums$.

Solution 2: Hash Table or Array

We can use a hash table or array to record the occurrence count of each number in the array $nums$. Then, we enumerate each number $x$ in the array $nums$, and check if $x + k$ and $x - k$ are in the array $nums$. If they are, we increment the answer by the sum of the occurrence counts of $x + k$ and $x - k$.

Finally, we return the answer.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.

  • class Solution {
        public int countKDifference(int[] nums, int k) {
            int ans = 0;
            for (int i = 0, n = nums.length; i < n; ++i) {
                for (int j = i + 1; j < n; ++j) {
                    if (Math.abs(nums[i] - nums[j]) == k) {
                        ++ans;
                    }
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int countKDifference(vector<int>& nums, int k) {
            int n = nums.size();
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                for (int j = i + 1; j < n; ++j) {
                    ans += abs(nums[i] - nums[j]) == k;
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def countKDifference(self, nums: List[int], k: int) -> int:
            n = len(nums)
            return sum(
                abs(nums[i] - nums[j]) == k for i in range(n) for j in range(i + 1, n)
            )
    
    
  • func countKDifference(nums []int, k int) int {
    	n := len(nums)
    	ans := 0
    	for i := 0; i < n; i++ {
    		for j := i + 1; j < n; j++ {
    			if abs(nums[i]-nums[j]) == k {
    				ans++
    			}
    		}
    	}
    	return ans
    }
    
    func abs(x int) int {
    	if x > 0 {
    		return x
    	}
    	return -x
    }
    
  • function countKDifference(nums: number[], k: number): number {
        let ans = 0;
        let cnt = new Map();
        for (let num of nums) {
            ans += (cnt.get(num - k) || 0) + (cnt.get(num + k) || 0);
            cnt.set(num, (cnt.get(num) || 0) + 1);
        }
        return ans;
    }
    
    
  • impl Solution {
        pub fn count_k_difference(nums: Vec<i32>, k: i32) -> i32 {
            let mut res = 0;
            let n = nums.len();
            for i in 0..n - 1 {
                for j in i..n {
                    if (nums[i] - nums[j]).abs() == k {
                        res += 1;
                    }
                }
            }
            res
        }
    }
    
    

All Problems

All Solutions