Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/1806.html
1806. Minimum Number of Operations to Reinitialize a Permutation
Level
Medium
Description
You are given an even integer n
. You initially have a permutation perm
of size n
where perm[i] == i
(0-indexed).
In one operation, you will create a new array arr
, and for each i
:
- If
i % 2 == 0
, thenarr[i] = perm[i / 2]
. - If
i % 2 == 1
, thenarr[i] = perm[n / 2 + (i - 1) / 2]
.
You will then assign arr
to perm
.
Return the minimum non-zero number of operations you need to perform on perm
to return the permutation to its initial value.
Example 1:
Input: n = 2
Output: 1
Explanation: nums = [0,1] initially.
After the 1st operation, nums = [0,1]
So it takes only 1 operation.
Example 2:
Input: n = 4
Output: 2
Explanation: nums = [0,1,2,3] initially.
After the 1st operation, nums = [0,2,1,3]
After the 2nd operation, nums = [0,1,2,3]
So it takes only 2 operations.
Example 3:
Input: n = 6
Output: 4
Constraints:
2 <= n <= 1000
n
is even.
Solution
Simply simulate the process. Create two arrays init
of perm
, each of which has length n
, and initialize init[i] = perm[i] = i
for 0 <= i < n
. Then update perm
each time until perm
equals init
, and return the number of operations.
-
class Solution { public int reinitializePermutation(int n) { int[] init = new int[n]; int[] perm = new int[n]; for (int i = 0; i < n; i++) { init[i] = i; perm[i] = i; } int ops = 0; while (true) { ops++; update(n, perm); if (Arrays.equals(perm, init)) break; } return ops; } public void update(int n, int[] perm) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { if (i % 2 == 0) arr[i] = perm[i / 2]; else arr[i] = perm[n / 2 + (i - 1) / 2]; } System.arraycopy(arr, 0, perm, 0, n); } } ############ class Solution { public int reinitializePermutation(int n) { int ans = 0; for (int i = 1;;) { ++ans; if (i < (n >> 1)) { i <<= 1; } else { i = (i - (n >> 1)) << 1 | 1; } if (i == 1) { return ans; } } } }
-
// OJ: https://leetcode.com/contest/weekly-contest-234/problems/minimum-number-of-operations-to-reinitialize-a-permutation/ // Time: O(logN) // Space: O(1) class Solution { public: int reinitializePermutation(int n) { int i = 1, cnt = 0; while (true) { ++cnt; if (i < n / 2) { i *= 2; } else { i = n - i - 1; i *= 2; i = n - i - 1; } if (i == 1) break; } return cnt; } };
-
class Solution: def reinitializePermutation(self, n: int) -> int: ans, i = 0, 1 while 1: ans += 1 if i < n >> 1: i <<= 1 else: i = (i - (n >> 1)) << 1 | 1 if i == 1: return ans ############ # 1806. Minimum Number of Operations to Reinitialize a Permutation # https://leetcode.com/problems/minimum-number-of-operations-to-reinitialize-a-permutation/ class Solution: def reinitializePermutation(self, n: int) -> int: arr = [i for i in range(n)] desired = [i for i in range(n)] count = 0 while count == 0 or arr != desired: tmp = [0] * n for i in range(n): if i % 2 == 0: tmp[i] = arr[i // 2] else: tmp[i] = arr[n // 2 + (i-1) // 2] arr = tmp count += 1 return count
-
func reinitializePermutation(n int) (ans int) { for i := 1; ; { ans++ if i < (n >> 1) { i <<= 1 } else { i = (i-(n>>1))<<1 | 1 } if i == 1 { return ans } } }