##### Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/1802.html

# 1802. Maximum Value at a Given Index in a Bounded Array

Medium

## Description

You are given three positive integers n, index and maxSum. You want to construct an array nums (0-indexed) that satisfies the following conditions:

• nums.length == n
• nums[i] is a positive integer where 0 <= i < n.
• abs(nums[i] - nums[i+1]) <= 1 where 0 <= i < n-1.
• The sum of all the elements of nums does not exceed maxSum.
• nums[index] is maximized.

Return nums[index] of the constructed array.

Note that abs(x) equals x if x >= 0, and -x otherwise.

Example 1:

Input: n = 4, index = 2, maxSum = 6

Output: 2

Explanation: The arrays [1,1,2,1] and [1,2,2,1] satisfy all the conditions. There are no other valid arrays with a larger value at the given index.

Example 2:

Input: n = 6, index = 1, maxSum = 10

Output: 3

Constraints:

• 1 <= n <= maxSum <= 10^9
• 0 <= index < n

## Solution

Use binary search. Initialize low = 1 and high = maxSum. Each time calculate mid as the mean of low and high, and calculate the minimum possible sum of nums when nums[index] = mid. If the minimum possible sum is greater than maxSum, let high = mid - 1. Otherwise, let low = mid. Finally, the answer is low.

Note that all elements in nums must be positive, which should be considered during binary search.

• class Solution {
public int maxValue(int n, int index, int maxSum) {
int low = 1, high = maxSum;
while (low < high) {
long mid = (high - low + 1) / 2 + low;
long sumLeft = ((mid - index) + (mid - 1)) * index / 2;
if (mid <= index)
sumLeft = (mid - 1) * mid / 2 + index - mid + 1;
sumLeft = Math.max(sumLeft, index);
long sumRight = ((mid - 1) + (mid - (n - 1 - index))) * (n - index - 1) / 2;
if (mid <= n - 1 - index)
sumRight = (mid - 1) * mid / 2 + (n - 1 - index - mid) + 1;
sumRight = Math.max(sumRight, n - index - 1);
long sum = sumLeft + sumRight + mid;
if (sum > maxSum)
high = (int) mid - 1;
else
low = (int) mid;
}
return low;
}
}

############

class Solution {
public int maxValue(int n, int index, int maxSum) {
int left = 1, right = maxSum;
while (left < right) {
int mid = (left + right + 1) >>> 1;
if (sum(mid - 1, index) + sum(mid, n - index) <= maxSum) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}

private long sum(long x, int cnt) {
return x >= cnt ? (x + x - cnt + 1) * cnt / 2 : (x + 1) * x / 2 + cnt - x;
}
}

• // OJ: https://leetcode.com/problems/maximum-value-at-a-given-index-in-a-bounded-array/
// Time: O(log(maxSum))
// Space: O(1)
class Solution {
long count(long len, long M) {
return M >= len ? (2 * M - len + 1) * len / 2 : ((M - 1) * M / 2 + len);
}
bool valid(long n, long i, long maxSum, long M) {
long left = count(i + 1, M), right = count(n - i, M);
return left + right - M <= maxSum;
}
public:
int maxValue(int n, int index, int maxSum) {
int L = 1, R = maxSum;
while (L <= R) {
int M = (L + R) / 2;
if (valid(n, index, maxSum, M)) L = M + 1;
else R = M - 1;
}
return R;
}
};

• class Solution:
def maxValue(self, n: int, index: int, maxSum: int) -> int:
def sum(x, cnt):
return (
(x + x - cnt + 1) * cnt // 2 if x >= cnt else (x + 1) * x // 2 + cnt - x
)

left, right = 1, maxSum
while left < right:
mid = (left + right + 1) >> 1
if sum(mid - 1, index) + sum(mid, n - index) <= maxSum:
left = mid
else:
right = mid - 1
return left

############

# 1802. Maximum Value at a Given Index in a Bounded Array
# https://leetcode.com/problems/maximum-value-at-a-given-index-in-a-bounded-array/

class Solution:
def maxValue(self, n: int, index: int, maxSum: int) -> int:
def good(a):
b = max(a - index, 0)
res = (a + b) * (a - b + 1) // 2
b = max(a - ((n - 1) - index), 0)
res += (a + b) * (a - b + 1) // 2
return res - a

maxSum -= n
left, right = 0, maxSum

while left < right:
mid = (left + right + 1) // 2
if good(mid) <= maxSum:
left = mid
else:
right = mid - 1

return left + 1


• func maxValue(n int, index int, maxSum int) int {
sum := func(x, cnt int) int {
if x >= cnt {
return (x + x - cnt + 1) * cnt / 2
}
return (x+1)*x/2 + cnt - x
}
return sort.Search(maxSum, func(x int) bool {
x++
return sum(x-1, index)+sum(x, n-index) > maxSum
})
}