Welcome to Subscribe On Youtube
1977. Number of Ways to Separate Numbers
Description
You wrote down many positive integers in a string called num. However, you realized that you forgot to add commas to seperate the different numbers. You remember that the list of integers was non-decreasing and that no integer had leading zeros.
Return the number of possible lists of integers that you could have written down to get the string num. Since the answer may be large, return it modulo 109 + 7.
Example 1:
Input: num = "327" Output: 2 Explanation: You could have written down the numbers: 3, 27 327
Example 2:
Input: num = "094" Output: 0 Explanation: No numbers can have leading zeros and all numbers must be positive.
Example 3:
Input: num = "0" Output: 0 Explanation: No numbers can have leading zeros and all numbers must be positive.
Constraints:
1 <= num.length <= 3500numconsists of digits'0'through'9'.
Solutions
-
class Solution { private static final int MOD = (int) 1e9 + 7; public int numberOfCombinations(String num) { int n = num.length(); int[][] lcp = new int[n + 1][n + 1]; for (int i = n - 1; i >= 0; --i) { for (int j = n - 1; j >= 0; --j) { if (num.charAt(i) == num.charAt(j)) { lcp[i][j] = 1 + lcp[i + 1][j + 1]; } } } int[][] dp = new int[n + 1][n + 1]; dp[0][0] = 1; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= i; ++j) { int v = 0; if (num.charAt(i - j) != '0') { if (i - j - j >= 0) { int x = lcp[i - j][i - j - j]; if (x >= j || num.charAt(i - j + x) >= num.charAt(i - j - j + x)) { v = dp[i - j][j]; } } if (v == 0) { v = dp[i - j][Math.min(j - 1, i - j)]; } } dp[i][j] = (dp[i][j - 1] + v) % MOD; } } return dp[n][n]; } } -
class Solution { public: const int mod = 1e9 + 7; int numberOfCombinations(string num) { int n = num.size(); vector<vector<int>> lcp(n + 1, vector<int>(n + 1)); for (int i = n - 1; i >= 0; --i) { for (int j = n - 1; j >= 0; --j) { if (num[i] == num[j]) { lcp[i][j] = 1 + lcp[i + 1][j + 1]; } } } auto cmp = [&](int i, int j, int k) { int x = lcp[i][j]; return x >= k || num[i + x] >= num[j + x]; }; vector<vector<int>> dp(n + 1, vector<int>(n + 1)); dp[0][0] = 1; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= i; ++j) { int v = 0; if (num[i - j] != '0') { if (i - j - j >= 0 && cmp(i - j, i - j - j, j)) { v = dp[i - j][j]; } else { v = dp[i - j][min(j - 1, i - j)]; } } dp[i][j] = (dp[i][j - 1] + v) % mod; } } return dp[n][n]; } }; -
class Solution: def numberOfCombinations(self, num: str) -> int: def cmp(i, j, k): x = lcp[i][j] return x >= k or num[i + x] >= num[j + x] mod = 10**9 + 7 n = len(num) lcp = [[0] * (n + 1) for _ in range(n + 1)] for i in range(n - 1, -1, -1): for j in range(n - 1, -1, -1): if num[i] == num[j]: lcp[i][j] = 1 + lcp[i + 1][j + 1] dp = [[0] * (n + 1) for _ in range(n + 1)] dp[0][0] = 1 for i in range(1, n + 1): for j in range(1, i + 1): v = 0 if num[i - j] != '0': if i - j - j >= 0 and cmp(i - j, i - j - j, j): v = dp[i - j][j] else: v = dp[i - j][min(j - 1, i - j)] dp[i][j] = (dp[i][j - 1] + v) % mod return dp[n][n] -
func numberOfCombinations(num string) int { n := len(num) lcp := make([][]int, n+1) dp := make([][]int, n+1) for i := range lcp { lcp[i] = make([]int, n+1) dp[i] = make([]int, n+1) } for i := n - 1; i >= 0; i-- { for j := n - 1; j >= 0; j-- { if num[i] == num[j] { lcp[i][j] = 1 + lcp[i+1][j+1] } } } cmp := func(i, j, k int) bool { x := lcp[i][j] return x >= k || num[i+x] >= num[j+x] } dp[0][0] = 1 var mod int = 1e9 + 7 for i := 1; i <= n; i++ { for j := 1; j <= i; j++ { v := 0 if num[i-j] != '0' { if i-j-j >= 0 && cmp(i-j, i-j-j, j) { v = dp[i-j][j] } else { v = dp[i-j][min(j-1, i-j)] } } dp[i][j] = (dp[i][j-1] + v) % mod } } return dp[n][n] }