Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/1771.html
1771. Maximize Palindrome Length From Subsequences
Level
Hard
Description
You are given two strings, word1
and word2
. You want to construct a string in the following manner:
- Choose some non-empty subsequence
subsequence1
fromword1
. - Choose some non-empty subsequence
subsequence2
fromword2
. - Concatenate the subsequences:
subsequence1 + subsequence2
, to make the string.
Return the length of the longest palindrome that can be constructed in the described manner. If no palindromes can be constructed, return 0
.
A subsequence of a string s
is a string that can be made by deleting some (possibly none) characters from s without changing the order of the remaining characters.
A palindrome is a string that reads the same forward as well as backward.
Example 1:
Input: word1 = “cacb”, word2 = “cbba”
Output: 5
Explanation: Choose “ab” from word1 and “cba” from word2 to make “abcba”, which is a palindrome.
Example 2:
Input: word1 = “ab”, word2 = “ab”
Output: 3
Explanation: Choose “ab” from word1 and “a” from word2 to make “aba”, which is a palindrome.
Example 3:
Input: word1 = “aa”, word2 = “bb”
Output: 0
Explanation: You cannot construct a palindrome from the described method, so return 0.
Constraints:
1 <= word1.length, word2.length <= 1000
word1
andword2
consist of lowercase English letters.
Solution
Concatenate word1
and word2
to form concat
, and use dynamic programming to find the palindrome subsequences of concat
. For each palindrome, if the first character is from word1
and the last character is from word2
(use indices to check this), then it is a valid palindrome, so update the maximum length of palindrome subsequences. Finally, return the maximum length.
-
class Solution { public int longestPalindrome(String word1, String word2) { StringBuffer sb = new StringBuffer(); sb.append(word1); sb.append(word2); String concat = sb.toString(); int length1 = word1.length(), length2 = word2.length(), length3 = concat.length(); int[][] dp = new int[length3][length3]; boolean[][] twoParts = new boolean[length3][length3]; for (int i = 0; i < length3; i++) { dp[i][i] = 1; twoParts[i][i] = false; } int maxLength = 0; for (int i = length3 - 2; i >= 0; i--) { for (int j = i + 1; j < length3; j++) { if (concat.charAt(i) == concat.charAt(j)) { dp[i][j] = dp[i + 1][j - 1] + 2; twoParts[i][j] = twoParts[i + 1][j - 1]; if (!twoParts[i][j]) twoParts[i][j] = i < length1 && j >= length1; } else { if (dp[i][j - 1] >= dp[i + 1][j]) { dp[i][j] = dp[i][j - 1]; twoParts[i][j] = twoParts[i][j - 1]; } if (dp[i][j - 1] <= dp[i + 1][j]) { dp[i][j] = dp[i + 1][j]; twoParts[i][j] = twoParts[i][j] || twoParts[i + 1][j]; } } if (twoParts[i][j]) maxLength = Math.max(maxLength, dp[i][j]); } } return maxLength; } } ############ class Solution { public int longestPalindrome(String word1, String word2) { String s = word1 + word2; int n = s.length(); int[][] f = new int[n][n]; for (int i = 0; i < n; ++i) { f[i][i] = 1; } int ans = 0; for (int i = n - 2; i >= 0; --i) { for (int j = i + 1; j < n; ++j) { if (s.charAt(i) == s.charAt(j)) { f[i][j] = f[i + 1][j - 1] + 2; if (i < word1.length() && j >= word1.length()) { ans = Math.max(ans, f[i][j]); } } else { f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]); } } } return ans; } }
-
// OJ: https://leetcode.com/problems/maximize-palindrome-length-from-subsequences/ // Time: O(MM + NN + MN) // Space: O(MM + NN + MN) class Solution { public: int longestPalindrome(string A, string B) { reverse(begin(A), end(A)); int M = A.size(), N = B.size(); vector<vector<int>> dp(M + 1, vector<int>(N + 1, 0)); vector<vector<int>> X(A.size(), vector<int>(A.size(), 1)), Y(N, vector<int>(B.size(), 1)); for (int len = 2; len <= M; ++len) { for (int i = 0; i <= M - len; ++i) { if (A[i] == A[i + len - 1]) X[i][i + len - 1] = 2 + (i + 1 <= i + len - 2 ? X[i + 1][i + len - 2] : 0); else X[i][i + len - 1] = max(X[i + 1][i + len - 1], X[i][i + len - 2]); } } for (int len = 2; len <= N; ++len) { for (int i = 0; i <= N - len; ++i) { if (B[i] == B[i + len - 1]) Y[i][i + len - 1] = 2 + (i + 1 <= i + len - 2 ? Y[i + 1][i + len - 2] : 0); else Y[i][i + len - 1] = max(Y[i + 1][i + len - 1], Y[i][i + len - 2]); } } for (int i = 0; i < M; ++i) { for (int j = 0; j < N; ++j) { if (A[i] == B[j]) { dp[i + 1][j + 1] = 2 + max({dp[i][j], i > 0 ? X[0][i - 1] : 0, j > 0 ? Y[0][j - 1] : 0 }); } else { dp[i + 1][j + 1] = max(dp[i][j + 1], dp[i + 1][j]); } } } return dp[M][N]; } };
-
class Solution: def longestPalindrome(self, word1: str, word2: str) -> int: s = word1 + word2 n = len(s) f = [[0] * n for _ in range(n)] for i in range(n): f[i][i] = 1 ans = 0 for i in range(n - 1, -1, -1): for j in range(i + 1, n): if s[i] == s[j]: f[i][j] = f[i + 1][j - 1] + 2 if i < len(word1) and j >= len(word1): ans = max(ans, f[i][j]) else: f[i][j] = max(f[i + 1][j], f[i][j - 1]) return ans
-
func longestPalindrome(word1 string, word2 string) (ans int) { s := word1 + word2 n := len(s) f := make([][]int, n) for i := range f { f[i] = make([]int, n) f[i][i] = 1 } for i := n - 2; i >= 0; i-- { for j := i + 1; j < n; j++ { if s[i] == s[j] { f[i][j] = f[i+1][j-1] + 2 if i < len(word1) && j >= len(word1) && ans < f[i][j] { ans = f[i][j] } } else { f[i][j] = max(f[i+1][j], f[i][j-1]) } } } return ans } func max(a, b int) int { if a > b { return a } return b }
-
function longestPalindrome(word1: string, word2: string): number { const s = word1 + word2; const n = s.length; const f: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => 0)); for (let i = 0; i < n; ++i) { f[i][i] = 1; } let ans = 0; for (let i = n - 2; ~i; --i) { for (let j = i + 1; j < n; ++j) { if (s[i] === s[j]) { f[i][j] = f[i + 1][j - 1] + 2; if (i < word1.length && j >= word1.length) { ans = Math.max(ans, f[i][j]); } } else { f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]); } } } return ans; }
-
impl Solution { pub fn longest_palindrome(word1: String, word2: String) -> i32 { let s: Vec<char> = format!("{}{}", word1, word2).chars().collect(); let n = s.len(); let mut f = vec![vec![0; n]; n]; for i in 0..n { f[i][i] = 1; } let mut ans = 0; for i in (0..n - 1).rev() { for j in i + 1..n { if s[i] == s[j] { f[i][j] = f[i + 1][j - 1] + 2; if i < word1.len() && j >= word1.len() { ans = ans.max(f[i][j]); } } else { f[i][j] = f[i + 1][j].max(f[i][j - 1]); } } } ans } }