Welcome to Subscribe On Youtube

1969. Minimum Non-Zero Product of the Array Elements

Description

You are given a positive integer p. Consider an array nums (1-indexed) that consists of the integers in the inclusive range [1, 2p - 1] in their binary representations. You are allowed to do the following operation any number of times:

  • Choose two elements x and y from nums.
  • Choose a bit in x and swap it with its corresponding bit in y. Corresponding bit refers to the bit that is in the same position in the other integer.

For example, if x = 1101 and y = 0011, after swapping the 2nd bit from the right, we have x = 1111 and y = 0001.

Find the minimum non-zero product of nums after performing the above operation any number of times. Return this product modulo 109 + 7.

Note: The answer should be the minimum product before the modulo operation is done.

 

Example 1:

Input: p = 1
Output: 1
Explanation: nums = [1].
There is only one element, so the product equals that element.

Example 2:

Input: p = 2
Output: 6
Explanation: nums = [01, 10, 11].
Any swap would either make the product 0 or stay the same.
Thus, the array product of 1 * 2 * 3 = 6 is already minimized.

Example 3:

Input: p = 3
Output: 1512
Explanation: nums = [001, 010, 011, 100, 101, 110, 111]
- In the first operation we can swap the leftmost bit of the second and fifth elements.
    - The resulting array is [001, 110, 011, 100, 001, 110, 111].
- In the second operation we can swap the middle bit of the third and fourth elements.
    - The resulting array is [001, 110, 001, 110, 001, 110, 111].
The array product is 1 * 6 * 1 * 6 * 1 * 6 * 7 = 1512, which is the minimum possible product.

 

Constraints:

  • 1 <= p <= 60

Solutions

  • class Solution {
        public int minNonZeroProduct(int p) {
            final int mod = (int) 1e9 + 7;
            long a = ((1L << p) - 1) % mod;
            long b = qpow(((1L << p) - 2) % mod, (1L << (p - 1)) - 1, mod);
            return (int) (a * b % mod);
        }
    
        private long qpow(long a, long n, int mod) {
            long ans = 1;
            for (; n > 0; n >>= 1) {
                if ((n & 1) == 1) {
                    ans = ans * a % mod;
                }
                a = a * a % mod;
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int minNonZeroProduct(int p) {
            using ll = long long;
            const int mod = 1e9 + 7;
            auto qpow = [](ll a, ll n) {
                ll ans = 1;
                for (; n; n >>= 1) {
                    if (n & 1) {
                        ans = ans * a % mod;
                    }
                    a = a * a % mod;
                }
                return ans;
            };
            ll a = ((1LL << p) - 1) % mod;
            ll b = qpow(((1LL << p) - 2) % mod, (1L << (p - 1)) - 1);
            return a * b % mod;
        }
    };
    
  • class Solution:
        def minNonZeroProduct(self, p: int) -> int:
            mod = 10**9 + 7
            return (2**p - 1) * pow(2**p - 2, 2 ** (p - 1) - 1, mod) % mod
    
    
  • func minNonZeroProduct(p int) int {
    	const mod int = 1e9 + 7
    	qpow := func(a, n int) int {
    		ans := 1
    		for ; n > 0; n >>= 1 {
    			if n&1 == 1 {
    				ans = ans * a % mod
    			}
    			a = a * a % mod
    		}
    		return ans
    	}
    	a := ((1 << p) - 1) % mod
    	b := qpow(((1<<p)-2)%mod, (1<<(p-1))-1)
    	return a * b % mod
    }
    
  • function minNonZeroProduct(p: number): number {
        const mod = BigInt(1e9 + 7);
    
        const qpow = (a: bigint, n: bigint): bigint => {
            let ans = BigInt(1);
            for (; n; n >>= BigInt(1)) {
                if (n & BigInt(1)) {
                    ans = (ans * a) % mod;
                }
                a = (a * a) % mod;
            }
            return ans;
        };
        const a = (2n ** BigInt(p) - 1n) % mod;
        const b = qpow((2n ** BigInt(p) - 2n) % mod, 2n ** (BigInt(p) - 1n) - 1n);
        return Number((a * b) % mod);
    }
    
    

All Problems

All Solutions