Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/1766.html

1766. Tree of Coprimes

Level

Hard

Description

There is a tree (i.e., a connected, undirected graph that has no cycles) consisting of n nodes numbered from 0 to n - 1 and exactly n - 1 edges. Each node has a value associated with it, and the root of the tree is node 0.

To represent this tree, you are given an integer array nums and a 2D array edges. Each nums[i] represents the i-th node’s value, and each edges[j] = [u_j, v_j] represents an edge between nodes u_j and v_j in the tree.

Two values x and y are coprime if gcd(x, y) == 1 where gcd(x, y) is the greatest common divisor of x and y.

An ancestor of a node i is any other node on the shortest path from node i to the root. A node is not considered an ancestor of itself.

Return an array ans of size n, where ans[i] is the closest ancestor to node i such that nums[i] and nums[ans[i]] are coprime, or -1 if there is no such ancestor.

Example 1:

Image text

Input: nums = [2,3,3,2], edges = [[0,1],[1,2],[1,3]]

Output: [-1,0,0,1]

Explanation: In the above figure, each node’s value is in parentheses.

  • Node 0 has no coprime ancestors.
  • Node 1 has only one ancestor, node 0. Their values are coprime (gcd(2,3) == 1).
  • Node 2 has two ancestors, nodes 1 and 0. Node 1’s value is not coprime (gcd(3,3) == 3), but node 0’s value is (gcd(2,3) == 1), so node 0 is the closest valid ancestor.
  • Node 3 has two ancestors, nodes 1 and 0. It is coprime with node 1 (gcd(3,2) == 1), so node 1 is its closest valid ancestor.

Example 2:

Image text

Input: nums = [5,6,10,2,3,6,15], edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]]

Output: [-1,0,-1,0,0,0,-1]

Constraints:

  • nums.length == n
  • 1 <= nums[i] <= 50
  • 1 <= n <= 10^5
  • edges.length == n - 1
  • edges[j].length == 2
  • 0 <= u_j, v_j < n
  • u_j != v_j

Solution

First, store each node’s adjacent nodes. Next, preprocess the numbers from 1 to 50 and find coprimes for each number. Then, do depth first search starting from root node 0 and fimd the nearest coprime node for each node.

  • class Solution {
        int[] ans;
        Map<Integer, List<Integer>> edgesMap = new HashMap<Integer, List<Integer>>();
        Map<Integer, List<Integer>> coprimesMap = new HashMap<Integer, List<Integer>>();
        int[] depths;
        int[] pos = new int[51];
    
        public int[] getCoprimes(int[] nums, int[][] edges) {
            int n = nums.length;
            ans = new int[n];
            depths = new int[n];
            Arrays.fill(ans, -1);
            Arrays.fill(pos, -1);
            for (int[] edge : edges) {
                int node0 = edge[0], node1 = edge[1];
                List<Integer> list0 = edgesMap.getOrDefault(node0, new ArrayList<Integer>());
                List<Integer> list1 = edgesMap.getOrDefault(node1, new ArrayList<Integer>());
                list0.add(node1);
                list1.add(node0);
                edgesMap.put(node0, list0);
                edgesMap.put(node1, list1);
            }
            for (int i = 1; i <= 50; i++) {
                for (int j = 1; j <= 50; j++) {
                    if (gcd(i, j) == 1) {
                        List<Integer> list = coprimesMap.getOrDefault(i, new ArrayList<Integer>());
                        list.add(j);
                        coprimesMap.put(i, list);
                    }
                }
            }
            depthFirstSearch(nums, 0, -1);
            return ans;
        }
    
        public void depthFirstSearch(int[] nums, int u, int form) {
            int t = nums[u];
            for (int v : coprimesMap.get(t)) {
                if (pos[v] != -1) {
                    if (ans[u] == -1 || depths[ans[u]] < depths[pos[v]])
                        ans[u] = pos[v];
                }
            }
            int p = pos[t];
            pos[t] = u;
            for (int i : edgesMap.get(u)) {
                if (i != form) {
                    depths[i] = depths[u] + 1;
                    depthFirstSearch(nums, i, u);
                }
            }
            pos[t] = p;
        }
    
        public int gcd(int a, int b) {
            while (a != 0 && b != 0) {
                if (a >= b)
                    a %= b;
                else
                    b %= a;
            }
            return a == 0 ? b : a;
        }
    }
    
    ############
    
    class Solution {
        private List<Integer>[] g;
        private List<Integer>[] f;
        private Deque<int[]>[] stks;
        private int[] nums;
        private int[] ans;
    
        public int[] getCoprimes(int[] nums, int[][] edges) {
            int n = nums.length;
            g = new List[n];
            Arrays.setAll(g, k -> new ArrayList<>());
            for (var e : edges) {
                int u = e[0], v = e[1];
                g[u].add(v);
                g[v].add(u);
            }
            f = new List[51];
            stks = new Deque[51];
            Arrays.setAll(f, k -> new ArrayList<>());
            Arrays.setAll(stks, k -> new ArrayDeque<>());
            for (int i = 1; i < 51; ++i) {
                for (int j = 1; j < 51; ++j) {
                    if (gcd(i, j) == 1) {
                        f[i].add(j);
                    }
                }
            }
            this.nums = nums;
            ans = new int[n];
            dfs(0, -1, 0);
            return ans;
        }
    
        private void dfs(int i, int fa, int depth) {
            int t = -1, k = -1;
            for (int v : f[nums[i]]) {
                var stk = stks[v];
                if (!stk.isEmpty() && stk.peek()[1] > k) {
                    t = stk.peek()[0];
                    k = stk.peek()[1];
                }
            }
            ans[i] = t;
            for (int j : g[i]) {
                if (j != fa) {
                    stks[nums[i]].push(new int[] {i, depth});
                    dfs(j, i, depth + 1);
                    stks[nums[i]].pop();
                }
            }
        }
    
        private int gcd(int a, int b) {
            return b == 0 ? a : gcd(b, a % b);
        }
    }
    
  • class Solution:
        def getCoprimes(self, nums: List[int], edges: List[List[int]]) -> List[int]:
            def dfs(i, fa, depth):
                t = k = -1
                for v in f[nums[i]]:
                    stk = stks[v]
                    if stk and stk[-1][1] > k:
                        t, k = stk[-1]
                ans[i] = t
                for j in g[i]:
                    if j != fa:
                        stks[nums[i]].append((i, depth))
                        dfs(j, i, depth + 1)
                        stks[nums[i]].pop()
    
            g = defaultdict(list)
            for u, v in edges:
                g[u].append(v)
                g[v].append(u)
            f = defaultdict(list)
            for i in range(1, 51):
                for j in range(1, 51):
                    if gcd(i, j) == 1:
                        f[i].append(j)
            stks = defaultdict(list)
            ans = [-1] * len(nums)
            dfs(0, -1, 0)
            return ans
    
    
    
  • class Solution {
    public:
        vector<int> getCoprimes(vector<int>& nums, vector<vector<int>>& edges) {
            int n = nums.size();
            vector<vector<int>> g(n);
            vector<vector<int>> f(51);
            vector<stack<pair<int, int>>> stks(51);
            for (auto& e : edges) {
                int u = e[0], v = e[1];
                g[u].emplace_back(v);
                g[v].emplace_back(u);
            }
            for (int i = 1; i < 51; ++i) {
                for (int j = 1; j < 51; ++j) {
                    if (__gcd(i, j) == 1) {
                        f[i].emplace_back(j);
                    }
                }
            }
            vector<int> ans(n);
            function<void(int, int, int)> dfs = [&](int i, int fa, int depth) {
                int t = -1, k = -1;
                for (int v : f[nums[i]]) {
                    auto& stk = stks[v];
                    if (!stk.empty() && stk.top().second > k) {
                        t = stk.top().first;
                        k = stk.top().second;
                    }
                }
                ans[i] = t;
                for (int j : g[i]) {
                    if (j != fa) {
                        stks[nums[i]].push({i, depth});
                        dfs(j, i, depth + 1);
                        stks[nums[i]].pop();
                    }
                }
            };
            dfs(0, -1, 0);
            return ans;
        }
    };
    
  • func getCoprimes(nums []int, edges [][]int) []int {
    	n := len(nums)
    	g := make([][]int, n)
    	f := [51][]int{}
    	type pair struct{ first, second int }
    	stks := [51][]pair{}
    	for _, e := range edges {
    		u, v := e[0], e[1]
    		g[u] = append(g[u], v)
    		g[v] = append(g[v], u)
    	}
    	for i := 1; i < 51; i++ {
    		for j := 1; j < 51; j++ {
    			if gcd(i, j) == 1 {
    				f[i] = append(f[i], j)
    			}
    		}
    	}
    	ans := make([]int, n)
    	var dfs func(i, fa, depth int)
    	dfs = func(i, fa, depth int) {
    		t, k := -1, -1
    		for _, v := range f[nums[i]] {
    			stk := stks[v]
    			if len(stk) > 0 && stk[len(stk)-1].second > k {
    				t, k = stk[len(stk)-1].first, stk[len(stk)-1].second
    			}
    		}
    		ans[i] = t
    		for _, j := range g[i] {
    			if j != fa {
    				stks[nums[i]] = append(stks[nums[i]], pair{i, depth})
    				dfs(j, i, depth+1)
    				stks[nums[i]] = stks[nums[i]][:len(stks[nums[i]])-1]
    			}
    		}
    	}
    	dfs(0, -1, 0)
    	return ans
    }
    
    func gcd(a, b int) int {
    	if b == 0 {
    		return a
    	}
    	return gcd(b, a%b)
    }
    

All Problems

All Solutions