Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/1759.html

1759. Count Number of Homogenous Substrings

Level

Medium

Description

Given a string s, return the number of homogenous substrings of s. Since the answer may be too large, return it modulo 10^9 + 7.

A string is homogenous if all the characters of the string are the same.

A substring is a contiguous sequence of characters within a string.

Example 1:

Input: s = “abbcccaa”

Output: 13

Explanation: The homogenous substrings are listed as below:

“a” appears 3 times.

“aa” appears 1 time.

“b” appears 2 times.

“bb” appears 1 time.

“c” appears 3 times.

“cc” appears 2 times.

“ccc” appears 1 time.

3 + 1 + 2 + 1 + 3 + 2 + 1 = 13.

Example 2:

Input: s = “xy”

Output: 2

Explanation: The homogenous substrings are “x” and “y”.

Example 3:

Input: s = “zzzzz”

Output: 15

Constraints:

  • 1 <= s.length <= 10^5
  • s consists of lowercase letters.

Solution

First, find all longest substrings such that all characters in the substring are the same. Next, calculate the count of each longest substring. If a longest substring have length n, then the number of homogeneous substrings in such a substring is n * (n + 1) / 2. Finally, return the total count.

  • class Solution {
        public int countHomogenous(String s) {
            final int MODULO = 1000000007;
            long totalCount = 0;
            int length = s.length();
            char prev = '0';
            int consecutive = 0;
            for (int i = 0; i < length; i++) {
                char c = s.charAt(i);
                if (c == prev)
                    consecutive++;
                else {
                    long curCount = (long) consecutive * (consecutive + 1) / 2 % MODULO;
                    totalCount = (totalCount + curCount) % MODULO;
                    consecutive = 1;
                    prev = c;
                }
            }
            long curCount = (long) consecutive * (consecutive + 1) / 2 % MODULO;
            totalCount = (totalCount + curCount) % MODULO;
            return (int) totalCount;
        }
    }
    
    ############
    
    class Solution {
        private static final int MOD = (int) 1e9 + 7;
    
        public int countHomogenous(String s) {
            int n = s.length();
            long ans = 0;
            for (int i = 0, j = 0; i < n; i = j) {
                j = i;
                while (j < n && s.charAt(j) == s.charAt(i)) {
                    ++j;
                }
                int cnt = j - i;
                ans += (long) (1 + cnt) * cnt / 2;
                ans %= MOD;
            }
            return (int) ans;
        }
    }
    
  • class Solution:
        def countHomogenous(self, s: str) -> int:
            mod = 10**9 + 7
            i, n = 0, len(s)
            ans = 0
            while i < n:
                j = i
                while j < n and s[j] == s[i]:
                    j += 1
                cnt = j - i
                ans += (1 + cnt) * cnt // 2
                ans %= mod
                i = j
            return ans
    
    ############
    
    # 1759. Count Number of Homogenous Substrings
    # https://leetcode.com/problems/count-number-of-homogenous-substrings
    
    class Solution:
        def countHomogenous(self, s: str) -> int:
            n = len(s)
            M = 10 ** 9 + 7
            res = 0
            
            mp = Counter(s)
            
            i = 0
            while i < n:
                j = i + 1
                while j < n and s[i] == s[j]:
                    res += j - i
                    j += 1
                
                i = j
            
            return (res + sum(mp.values())) % M
    
    
  • class Solution {
    public:
        const int mod = 1e9 + 7;
    
        int countHomogenous(string s) {
            int n = s.size();
            long ans = 0;
            for (int i = 0, j = 0; i < n; i = j) {
                j = i;
                while (j < n && s[j] == s[i]) ++j;
                int cnt = j - i;
                ans += 1ll * (1 + cnt) * cnt / 2;
                ans %= mod;
            }
            return ans;
        }
    };
    
  • func countHomogenous(s string) (ans int) {
    	n := len(s)
    	const mod int = 1e9 + 7
    	for i, j := 0, 0; i < n; i = j {
    		j = i
    		for j < n && s[j] == s[i] {
    			j++
    		}
    		cnt := j - i
    		ans += (1 + cnt) * cnt / 2
    		ans %= mod
    	}
    	return
    }
    
  • function countHomogenous(s: string): number {
        const mod = 1e9 + 7;
        const n = s.length;
        let ans = 0;
        for (let i = 0, j = 0; j < n; j++) {
            if (s[i] !== s[j]) {
                i = j;
            }
            ans = (ans + j - i + 1) % mod;
        }
        return ans;
    }
    
    
  • impl Solution {
        pub fn count_homogenous(s: String) -> i32 {
            const MOD: usize = 1e9 as usize + 7;
            let s = s.as_bytes();
            let n = s.len();
            let mut ans = 0;
            let mut i = 0;
            for j in 0..n {
                if s[i] != s[j] {
                    i = j;
                }
                ans = (ans + j - i + 1) % MOD;
            }
            ans as i32
        }
    }
    
    
  • public class Solution {
        public int CountHomogenous(string s) {
            long MOD = 1000000007;
            long ans = 0;
            for (int i = 0, j = 0; i < s.Length; i = j) {
                j = i;
                while (j < s.Length && s[j] == s[i]) {
                    ++j;
                }
                int cnt = j - i;
                ans += (long) (1 + cnt) * cnt / 2;
                ans %= MOD;
            }
            return (int) ans;
        }
    }
    
    

All Problems

All Solutions