Welcome to Subscribe On Youtube
1947. Maximum Compatibility Score Sum
Description
There is a survey that consists of n
questions where each question's answer is either 0
(no) or 1
(yes).
The survey was given to m
students numbered from 0
to m - 1
and m
mentors numbered from 0
to m - 1
. The answers of the students are represented by a 2D integer array students
where students[i]
is an integer array that contains the answers of the ith
student (0-indexed). The answers of the mentors are represented by a 2D integer array mentors
where mentors[j]
is an integer array that contains the answers of the jth
mentor (0-indexed).
Each student will be assigned to one mentor, and each mentor will have one student assigned to them. The compatibility score of a student-mentor pair is the number of answers that are the same for both the student and the mentor.
- For example, if the student's answers were
[1, 0, 1]
and the mentor's answers were[0, 0, 1]
, then their compatibility score is 2 because only the second and the third answers are the same.
You are tasked with finding the optimal student-mentor pairings to maximize the sum of the compatibility scores.
Given students
and mentors
, return the maximum compatibility score sum that can be achieved.
Example 1:
Input: students = [[1,1,0],[1,0,1],[0,0,1]], mentors = [[1,0,0],[0,0,1],[1,1,0]] Output: 8 Explanation: We assign students to mentors in the following way: - student 0 to mentor 2 with a compatibility score of 3. - student 1 to mentor 0 with a compatibility score of 2. - student 2 to mentor 1 with a compatibility score of 3. The compatibility score sum is 3 + 2 + 3 = 8.
Example 2:
Input: students = [[0,0],[0,0],[0,0]], mentors = [[1,1],[1,1],[1,1]] Output: 0 Explanation: The compatibility score of any student-mentor pair is 0.
Constraints:
m == students.length == mentors.length
n == students[i].length == mentors[j].length
1 <= m, n <= 8
students[i][k]
is either0
or1
.mentors[j][k]
is either0
or1
.
Solutions
-
class Solution { private int[][] g; private boolean[] vis; private int m; private int ans; public int maxCompatibilitySum(int[][] students, int[][] mentors) { m = students.length; g = new int[m][m]; vis = new boolean[m]; for (int i = 0; i < m; ++i) { for (int j = 0; j < m; ++j) { for (int k = 0; k < students[i].length; ++k) { g[i][j] += students[i][k] == mentors[j][k] ? 1 : 0; } } } dfs(0, 0); return ans; } private void dfs(int i, int t) { if (i == m) { ans = Math.max(ans, t); return; } for (int j = 0; j < m; ++j) { if (!vis[j]) { vis[j] = true; dfs(i + 1, t + g[i][j]); vis[j] = false; } } } }
-
class Solution { public: int maxCompatibilitySum(vector<vector<int>>& students, vector<vector<int>>& mentors) { int m = students.size(); int n = students[0].size(); int g[m][m]; memset(g, 0, sizeof g); bool vis[m]; memset(vis, 0, sizeof vis); for (int i = 0; i < m; ++i) { for (int j = 0; j < m; ++j) { for (int k = 0; k < n; ++k) { g[i][j] += students[i][k] == mentors[j][k]; } } } int ans = 0; function<void(int, int)> dfs = [&](int i, int t) { if (i == m) { ans = max(ans, t); return; } for (int j = 0; j < m; ++j) { if (!vis[j]) { vis[j] = true; dfs(i + 1, t + g[i][j]); vis[j] = false; } } }; dfs(0, 0); return ans; } };
-
class Solution: def maxCompatibilitySum( self, students: List[List[int]], mentors: List[List[int]] ) -> int: def dfs(i, t): if i == m: nonlocal ans ans = max(ans, t) return for j in range(m): if not vis[j]: vis[j] = True dfs(i + 1, t + g[i][j]) vis[j] = False m = len(students) g = [[0] * m for _ in range(m)] for i in range(m): for j in range(m): g[i][j] = sum(a == b for a, b in zip(students[i], mentors[j])) vis = [False] * m ans = 0 dfs(0, 0) return ans
-
func maxCompatibilitySum(students [][]int, mentors [][]int) (ans int) { m, n := len(students), len(students[0]) g := make([][]int, m) vis := make([]bool, m) for i := range g { g[i] = make([]int, m) for j := range g { for k := 0; k < n; k++ { if students[i][k] == mentors[j][k] { g[i][j]++ } } } } var dfs func(int, int) dfs = func(i, t int) { if i == m { ans = max(ans, t) return } for j := 0; j < m; j++ { if !vis[j] { vis[j] = true dfs(i+1, t+g[i][j]) vis[j] = false } } } dfs(0, 0) return }