Welcome to Subscribe On Youtube

1933. Check if String Is Decomposable Into Value-Equal Substrings

Description

A value-equal string is a string where all characters are the same.

  • For example, "1111" and "33" are value-equal strings.
  • In contrast, "123" is not a value-equal string.

Given a digit string s, decompose the string into some number of consecutive value-equal substrings where exactly one substring has a length of 2 and the remaining substrings have a length of 3.

Return true if you can decompose s according to the above rules. Otherwise, return false.

A substring is a contiguous sequence of characters in a string.

 

Example 1:

Input: s = "000111000"
Output: false
Explanation: s cannot be decomposed according to the rules because ["000", "111", "000"] does not have a substring of length 2.

Example 2:

Input: s = "00011111222"
Output: true
Explanation: s can be decomposed into ["000", "111", "11", "222"].

Example 3:

Input: s = "011100022233"
Output: false
Explanation: s cannot be decomposed according to the rules because of the first '0'.

 

Constraints:

  • 1 <= s.length <= 1000
  • s consists of only digits '0' through '9'.

Solutions

Solution 1: Two Pointers

We traverse the string $s$, using two pointers $i$ and $j$ to count the length of each equal substring. If the length modulo $3$ is $1$, it means that the length of this substring does not meet the requirements, so we return false. If the length modulo $3$ is $2$, it means that a substring of length $2$ has appeared. If a substring of length $2$ has appeared before, return false, otherwise assign the value of $j$ to $i$ and continue to traverse.

After the traversal, check whether a substring of length $2$ has appeared. If not, return false, otherwise return true.

The time complexity is $O(n)$, where $n$ is the length of the string $s$. The space complexity is $O(1)$.

  • class Solution {
        public boolean isDecomposable(String s) {
            int i = 0, n = s.length();
            int cnt2 = 0;
            while (i < n) {
                int j = i;
                while (j < n && s.charAt(j) == s.charAt(i)) {
                    ++j;
                }
                if ((j - i) % 3 == 1) {
                    return false;
                }
                if ((j - i) % 3 == 2 && ++cnt2 > 1) {
                    return false;
                }
                i = j;
            }
            return cnt2 == 1;
        }
    }
    
  • class Solution {
    public:
        bool isDecomposable(string s) {
            int cnt2 = 0;
            for (int i = 0, n = s.size(); i < n;) {
                int j = i;
                while (j < n && s[j] == s[i]) {
                    ++j;
                }
                if ((j - i) % 3 == 1) {
                    return false;
                }
                cnt2 += (j - i) % 3 == 2;
                if (cnt2 > 1) {
                    return false;
                }
                i = j;
            }
            return cnt2 == 1;
        }
    };
    
  • class Solution:
        def isDecomposable(self, s: str) -> bool:
            i, n = 0, len(s)
            cnt2 = 0
            while i < n:
                j = i
                while j < n and s[j] == s[i]:
                    j += 1
                if (j - i) % 3 == 1:
                    return False
                cnt2 += (j - i) % 3 == 2
                if cnt2 > 1:
                    return False
                i = j
            return cnt2 == 1
    
    
  • func isDecomposable(s string) bool {
    	i, n := 0, len(s)
    	cnt2 := 0
    	for i < n {
    		j := i
    		for j < n && s[j] == s[i] {
    			j++
    		}
    		if (j-i)%3 == 1 {
    			return false
    		}
    		if (j-i)%3 == 2 {
    			cnt2++
    			if cnt2 > 1 {
    				return false
    			}
    		}
    		i = j
    	}
    	return cnt2 == 1
    }
    
  • function isDecomposable(s: string): boolean {
        const n = s.length;
        let cnt2 = 0;
        for (let i = 0; i < n; ) {
            let j = i;
            while (j < n && s[j] === s[i]) {
                ++j;
            }
            if ((j - i) % 3 === 1) {
                return false;
            }
            if ((j - i) % 3 === 2 && ++cnt2 > 1) {
                return false;
            }
            i = j;
        }
        return cnt2 === 1;
    }
    
    

All Problems

All Solutions