Welcome to Subscribe On Youtube

1914. Cyclically Rotating a Grid

Description

You are given an m x n integer matrix grid​​​, where m and n are both even integers, and an integer k.

The matrix is composed of several layers, which is shown in the below image, where each color is its own layer:

A cyclic rotation of the matrix is done by cyclically rotating each layer in the matrix. To cyclically rotate a layer once, each element in the layer will take the place of the adjacent element in the counter-clockwise direction. An example rotation is shown below:

Return the matrix after applying k cyclic rotations to it.

 

Example 1:

Input: grid = [[40,10],[30,20]], k = 1
Output: [[10,20],[40,30]]
Explanation: The figures above represent the grid at every state.

Example 2:

Input: grid = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]], k = 2
Output: [[3,4,8,12],[2,11,10,16],[1,7,6,15],[5,9,13,14]]
Explanation: The figures above represent the grid at every state.

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 2 <= m, n <= 50
  • Both m and n are even integers.
  • 1 <= grid[i][j] <= 5000
  • 1 <= k <= 109

Solutions

  • class Solution {
        private int m;
        private int n;
        private int[][] grid;
    
        public int[][] rotateGrid(int[][] grid, int k) {
            m = grid.length;
            n = grid[0].length;
            this.grid = grid;
            for (int p = 0; p < Math.min(m, n) / 2; ++p) {
                rotate(p, k);
            }
            return grid;
        }
    
        private void rotate(int p, int k) {
            List<Integer> nums = new ArrayList<>();
            for (int j = p; j < n - p - 1; ++j) {
                nums.add(grid[p][j]);
            }
            for (int i = p; i < m - p - 1; ++i) {
                nums.add(grid[i][n - p - 1]);
            }
            for (int j = n - p - 1; j > p; --j) {
                nums.add(grid[m - p - 1][j]);
            }
            for (int i = m - p - 1; i > p; --i) {
                nums.add(grid[i][p]);
            }
            int l = nums.size();
            k %= l;
            if (k == 0) {
                return;
            }
            for (int j = p; j < n - p - 1; ++j) {
                grid[p][j] = nums.get(k++ % l);
            }
            for (int i = p; i < m - p - 1; ++i) {
                grid[i][n - p - 1] = nums.get(k++ % l);
            }
            for (int j = n - p - 1; j > p; --j) {
                grid[m - p - 1][j] = nums.get(k++ % l);
            }
            for (int i = m - p - 1; i > p; --i) {
                grid[i][p] = nums.get(k++ % l);
            }
        }
    }
    
  • class Solution {
    public:
        vector<vector<int>> rotateGrid(vector<vector<int>>& grid, int k) {
            int m = grid.size(), n = grid[0].size();
            auto rotate = [&](int p, int k) {
                vector<int> nums;
                for (int j = p; j < n - p - 1; ++j) {
                    nums.push_back(grid[p][j]);
                }
                for (int i = p; i < m - p - 1; ++i) {
                    nums.push_back(grid[i][n - p - 1]);
                }
                for (int j = n - p - 1; j > p; --j) {
                    nums.push_back(grid[m - p - 1][j]);
                }
                for (int i = m - p - 1; i > p; --i) {
                    nums.push_back(grid[i][p]);
                }
                int l = nums.size();
                k %= l;
                if (k == 0) {
                    return;
                }
                for (int j = p; j < n - p - 1; ++j) {
                    grid[p][j] = nums[k++ % l];
                }
                for (int i = p; i < m - p - 1; ++i) {
                    grid[i][n - p - 1] = nums[k++ % l];
                }
                for (int j = n - p - 1; j > p; --j) {
                    grid[m - p - 1][j] = nums[k++ % l];
                }
                for (int i = m - p - 1; i > p; --i) {
                    grid[i][p] = nums[k++ % l];
                }
            };
            for (int p = 0; p < min(m, n) / 2; ++p) {
                rotate(p, k);
            }
            return grid;
        }
    };
    
  • class Solution:
        def rotateGrid(self, grid: List[List[int]], k: int) -> List[List[int]]:
            def rotate(p: int, k: int):
                nums = []
                for j in range(p, n - p - 1):
                    nums.append(grid[p][j])
                for i in range(p, m - p - 1):
                    nums.append(grid[i][n - p - 1])
                for j in range(n - p - 1, p, -1):
                    nums.append(grid[m - p - 1][j])
                for i in range(m - p - 1, p, -1):
                    nums.append(grid[i][p])
                k %= len(nums)
                if k == 0:
                    return
                nums = nums[k:] + nums[:k]
                k = 0
                for j in range(p, n - p - 1):
                    grid[p][j] = nums[k]
                    k += 1
                for i in range(p, m - p - 1):
                    grid[i][n - p - 1] = nums[k]
                    k += 1
                for j in range(n - p - 1, p, -1):
                    grid[m - p - 1][j] = nums[k]
                    k += 1
                for i in range(m - p - 1, p, -1):
                    grid[i][p] = nums[k]
                    k += 1
    
            m, n = len(grid), len(grid[0])
            for p in range(min(m, n) >> 1):
                rotate(p, k)
            return grid
    
    
  • func rotateGrid(grid [][]int, k int) [][]int {
    	m, n := len(grid), len(grid[0])
    
    	rotate := func(p, k int) {
    		nums := []int{}
    		for j := p; j < n-p-1; j++ {
    			nums = append(nums, grid[p][j])
    		}
    		for i := p; i < m-p-1; i++ {
    			nums = append(nums, grid[i][n-p-1])
    		}
    		for j := n - p - 1; j > p; j-- {
    			nums = append(nums, grid[m-p-1][j])
    		}
    		for i := m - p - 1; i > p; i-- {
    			nums = append(nums, grid[i][p])
    		}
    		l := len(nums)
    		k %= l
    		if k == 0 {
    			return
    		}
    		for j := p; j < n-p-1; j++ {
    			grid[p][j] = nums[k]
    			k = (k + 1) % l
    		}
    		for i := p; i < m-p-1; i++ {
    			grid[i][n-p-1] = nums[k]
    			k = (k + 1) % l
    		}
    		for j := n - p - 1; j > p; j-- {
    			grid[m-p-1][j] = nums[k]
    			k = (k + 1) % l
    		}
    		for i := m - p - 1; i > p; i-- {
    			grid[i][p] = nums[k]
    			k = (k + 1) % l
    		}
    	}
    
    	for i := 0; i < m/2 && i < n/2; i++ {
    		rotate(i, k)
    	}
    	return grid
    }
    
  • function rotateGrid(grid: number[][], k: number): number[][] {
        const m = grid.length;
        const n = grid[0].length;
        const rotate = (p: number, k: number) => {
            const nums: number[] = [];
            for (let j = p; j < n - p - 1; ++j) {
                nums.push(grid[p][j]);
            }
            for (let i = p; i < m - p - 1; ++i) {
                nums.push(grid[i][n - p - 1]);
            }
            for (let j = n - p - 1; j > p; --j) {
                nums.push(grid[m - p - 1][j]);
            }
            for (let i = m - p - 1; i > p; --i) {
                nums.push(grid[i][p]);
            }
            const l = nums.length;
            k %= l;
            if (k === 0) {
                return;
            }
            for (let j = p; j < n - p - 1; ++j) {
                grid[p][j] = nums[k++ % l];
            }
            for (let i = p; i < m - p - 1; ++i) {
                grid[i][n - p - 1] = nums[k++ % l];
            }
            for (let j = n - p - 1; j > p; --j) {
                grid[m - p - 1][j] = nums[k++ % l];
            }
            for (let i = m - p - 1; i > p; --i) {
                grid[i][p] = nums[k++ % l];
            }
        };
        for (let p = 0; p < Math.min(m, n) >> 1; ++p) {
            rotate(p, k);
        }
        return grid;
    }
    
    

All Problems

All Solutions