Welcome to Subscribe On Youtube
1914. Cyclically Rotating a Grid
Description
You are given an m x n
integer matrix grid
, where m
and n
are both even integers, and an integer k
.
The matrix is composed of several layers, which is shown in the below image, where each color is its own layer:
A cyclic rotation of the matrix is done by cyclically rotating each layer in the matrix. To cyclically rotate a layer once, each element in the layer will take the place of the adjacent element in the counter-clockwise direction. An example rotation is shown below:
Return the matrix after applying k
cyclic rotations to it.
Example 1:
Input: grid = [[40,10],[30,20]], k = 1 Output: [[10,20],[40,30]] Explanation: The figures above represent the grid at every state.
Example 2:
Input: grid = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]], k = 2 Output: [[3,4,8,12],[2,11,10,16],[1,7,6,15],[5,9,13,14]] Explanation: The figures above represent the grid at every state.
Constraints:
m == grid.length
n == grid[i].length
2 <= m, n <= 50
- Both
m
andn
are even integers. 1 <= grid[i][j] <= 5000
1 <= k <= 109
Solutions
-
class Solution { private int m; private int n; private int[][] grid; public int[][] rotateGrid(int[][] grid, int k) { m = grid.length; n = grid[0].length; this.grid = grid; for (int p = 0; p < Math.min(m, n) / 2; ++p) { rotate(p, k); } return grid; } private void rotate(int p, int k) { List<Integer> nums = new ArrayList<>(); for (int j = p; j < n - p - 1; ++j) { nums.add(grid[p][j]); } for (int i = p; i < m - p - 1; ++i) { nums.add(grid[i][n - p - 1]); } for (int j = n - p - 1; j > p; --j) { nums.add(grid[m - p - 1][j]); } for (int i = m - p - 1; i > p; --i) { nums.add(grid[i][p]); } int l = nums.size(); k %= l; if (k == 0) { return; } for (int j = p; j < n - p - 1; ++j) { grid[p][j] = nums.get(k++ % l); } for (int i = p; i < m - p - 1; ++i) { grid[i][n - p - 1] = nums.get(k++ % l); } for (int j = n - p - 1; j > p; --j) { grid[m - p - 1][j] = nums.get(k++ % l); } for (int i = m - p - 1; i > p; --i) { grid[i][p] = nums.get(k++ % l); } } }
-
class Solution { public: vector<vector<int>> rotateGrid(vector<vector<int>>& grid, int k) { int m = grid.size(), n = grid[0].size(); auto rotate = [&](int p, int k) { vector<int> nums; for (int j = p; j < n - p - 1; ++j) { nums.push_back(grid[p][j]); } for (int i = p; i < m - p - 1; ++i) { nums.push_back(grid[i][n - p - 1]); } for (int j = n - p - 1; j > p; --j) { nums.push_back(grid[m - p - 1][j]); } for (int i = m - p - 1; i > p; --i) { nums.push_back(grid[i][p]); } int l = nums.size(); k %= l; if (k == 0) { return; } for (int j = p; j < n - p - 1; ++j) { grid[p][j] = nums[k++ % l]; } for (int i = p; i < m - p - 1; ++i) { grid[i][n - p - 1] = nums[k++ % l]; } for (int j = n - p - 1; j > p; --j) { grid[m - p - 1][j] = nums[k++ % l]; } for (int i = m - p - 1; i > p; --i) { grid[i][p] = nums[k++ % l]; } }; for (int p = 0; p < min(m, n) / 2; ++p) { rotate(p, k); } return grid; } };
-
class Solution: def rotateGrid(self, grid: List[List[int]], k: int) -> List[List[int]]: def rotate(p: int, k: int): nums = [] for j in range(p, n - p - 1): nums.append(grid[p][j]) for i in range(p, m - p - 1): nums.append(grid[i][n - p - 1]) for j in range(n - p - 1, p, -1): nums.append(grid[m - p - 1][j]) for i in range(m - p - 1, p, -1): nums.append(grid[i][p]) k %= len(nums) if k == 0: return nums = nums[k:] + nums[:k] k = 0 for j in range(p, n - p - 1): grid[p][j] = nums[k] k += 1 for i in range(p, m - p - 1): grid[i][n - p - 1] = nums[k] k += 1 for j in range(n - p - 1, p, -1): grid[m - p - 1][j] = nums[k] k += 1 for i in range(m - p - 1, p, -1): grid[i][p] = nums[k] k += 1 m, n = len(grid), len(grid[0]) for p in range(min(m, n) >> 1): rotate(p, k) return grid
-
func rotateGrid(grid [][]int, k int) [][]int { m, n := len(grid), len(grid[0]) rotate := func(p, k int) { nums := []int{} for j := p; j < n-p-1; j++ { nums = append(nums, grid[p][j]) } for i := p; i < m-p-1; i++ { nums = append(nums, grid[i][n-p-1]) } for j := n - p - 1; j > p; j-- { nums = append(nums, grid[m-p-1][j]) } for i := m - p - 1; i > p; i-- { nums = append(nums, grid[i][p]) } l := len(nums) k %= l if k == 0 { return } for j := p; j < n-p-1; j++ { grid[p][j] = nums[k] k = (k + 1) % l } for i := p; i < m-p-1; i++ { grid[i][n-p-1] = nums[k] k = (k + 1) % l } for j := n - p - 1; j > p; j-- { grid[m-p-1][j] = nums[k] k = (k + 1) % l } for i := m - p - 1; i > p; i-- { grid[i][p] = nums[k] k = (k + 1) % l } } for i := 0; i < m/2 && i < n/2; i++ { rotate(i, k) } return grid }
-
function rotateGrid(grid: number[][], k: number): number[][] { const m = grid.length; const n = grid[0].length; const rotate = (p: number, k: number) => { const nums: number[] = []; for (let j = p; j < n - p - 1; ++j) { nums.push(grid[p][j]); } for (let i = p; i < m - p - 1; ++i) { nums.push(grid[i][n - p - 1]); } for (let j = n - p - 1; j > p; --j) { nums.push(grid[m - p - 1][j]); } for (let i = m - p - 1; i > p; --i) { nums.push(grid[i][p]); } const l = nums.length; k %= l; if (k === 0) { return; } for (let j = p; j < n - p - 1; ++j) { grid[p][j] = nums[k++ % l]; } for (let i = p; i < m - p - 1; ++i) { grid[i][n - p - 1] = nums[k++ % l]; } for (let j = n - p - 1; j > p; --j) { grid[m - p - 1][j] = nums[k++ % l]; } for (let i = m - p - 1; i > p; --i) { grid[i][p] = nums[k++ % l]; } }; for (let p = 0; p < Math.min(m, n) >> 1; ++p) { rotate(p, k); } return grid; }