Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/1714.html
1714. Sum Of Special Evenly-Spaced Elements In Array
Level
Hard
Description
You are given a 0-indexed integer array nums
consisting of n non-negative integers.
You are also given an array queries
, where queries[i] = [x_i, y_i]
. The answer to the i-th
query is the sum of all nums[j]
where x_i <= j < n
and (j - x_i)
is divisible by y_i
.
Return an array answer
where answer.length == queries.length
and answer[i]
is the answer to the i-th
query modulo 10^9 + 7
.
Example 1:
Input: nums = [0,1,2,3,4,5,6,7], queries = [[0,3],[5,1],[4,2]]
Output: [9,18,10]
Explanation: The answers of the queries are as follows:
1) The j indices that satisfy this query are 0, 3, and 6. nums[0] + nums[3] + nums[6] = 9
2) The j indices that satisfy this query are 5, 6, and 7. nums[5] + nums[6] + nums[7] = 18
3) The j indices that satisfy this query are 4 and 6. nums[4] + nums[6] = 10
Example 2:
Input: nums = [100,200,101,201,102,202,103,203], queries = [[0,7]]
Output: [303]
Constraints:
n == nums.length
1 <= n <= 5 * 10^4
0 <= nums[i] <= 10^9
1 <= queries.length <= 1.5 * 10^5
0 <= x_i < n
1 <= y_i <= 5 * 10^4
Solution
Let n
be the length of nums
and let sqrt
be the square root of n
. Create a 2D array dp
of n
rows and sqrt - 1
columns, where dp[x][y]
represents the query result of [x, y]
when y
is less than sqrt
. For i
from n - 1
to 0 and for j
from 1 to sqrt - 1
, if i + j < n
, then dp[i][j] = nums[i] + dp[i + j][j]
. Otherwise, dp[i][j] = nums[i]
.
For the i
-th query [x, y]
, if y < sqrt
, then answer[i] = dp[x][y]
. Otherwise, calculate the sum accordingly and let answer[i]
be the sum. Finally, return answer
.
-
class Solution { public int[] solve(int[] nums, int[][] queries) { final int MODULO = 1000000007; int length = nums.length; int sqrt = (int) Math.sqrt(length); int queriesCount = queries.length; int[] answer = new int[queriesCount]; long[][] dp = new long[length][sqrt]; for (int i = length - 1; i >= 0; i--) { for (int j = 1; j < sqrt; j++) { if (i + j < length) dp[i][j] = (nums[i] + dp[i + j][j]) % MODULO; else dp[i][j] = nums[i]; } } for (int i = 0; i < queriesCount; i++) { int x = queries[i][0], y = queries[i][1]; if (y >= sqrt) { long sum = 0; while (x < length) { sum = (sum + nums[x]) % MODULO; x += y; } answer[i] = (int) sum; } else answer[i] = (int) dp[x][y]; } return answer; } }
-
class Solution { public: vector<int> solve(vector<int>& nums, vector<vector<int>>& queries) { int n = nums.size(); int m = (int) sqrt(n); const int mod = 1e9 + 7; int suf[m + 1][n + 1]; memset(suf, 0, sizeof(suf)); for (int i = 1; i <= m; ++i) { for (int j = n - 1; ~j; --j) { suf[i][j] = (suf[i][min(n, j + i)] + nums[j]) % mod; } } vector<int> ans; for (auto& q : queries) { int x = q[0], y = q[1]; if (y <= m) { ans.push_back(suf[y][x]); } else { int s = 0; for (int i = x; i < n; i += y) { s = (s + nums[i]) % mod; } ans.push_back(s); } } return ans; } };
-
class Solution: def solve(self, nums: List[int], queries: List[List[int]]) -> List[int]: mod = 10**9 + 7 n = len(nums) m = int(sqrt(n)) suf = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(n - 1, -1, -1): suf[i][j] = suf[i][min(n, j + i)] + nums[j] ans = [] for x, y in queries: if y <= m: ans.append(suf[y][x] % mod) else: ans.append(sum(nums[x::y]) % mod) return ans
-
func solve(nums []int, queries [][]int) (ans []int) { n := len(nums) m := int(math.Sqrt(float64(n))) const mod int = 1e9 + 7 suf := make([][]int, m+1) for i := range suf { suf[i] = make([]int, n+1) for j := n - 1; j >= 0; j-- { suf[i][j] = (suf[i][min(n, j+i)] + nums[j]) % mod } } for _, q := range queries { x, y := q[0], q[1] if y <= m { ans = append(ans, suf[y][x]) } else { s := 0 for i := x; i < n; i += y { s = (s + nums[i]) % mod } ans = append(ans, s) } } return } func min(a, b int) int { if a < b { return a } return b }
-
function solve(nums: number[], queries: number[][]): number[] { const n = nums.length; const m = Math.floor(Math.sqrt(n)); const mod = 10 ** 9 + 7; const suf: number[][] = Array(m + 1) .fill(0) .map(() => Array(n + 1).fill(0)); for (let i = 1; i <= m; ++i) { for (let j = n - 1; j >= 0; --j) { suf[i][j] = (suf[i][Math.min(n, j + i)] + nums[j]) % mod; } } const ans: number[] = []; for (const [x, y] of queries) { if (y <= m) { ans.push(suf[y][x]); } else { let s = 0; for (let i = x; i < n; i += y) { s = (s + nums[i]) % mod; } ans.push(s); } } return ans; }