Welcome to Subscribe On Youtube

1886. Determine Whether Matrix Can Be Obtained By Rotation

Description

Given two n x n binary matrices mat and target, return true if it is possible to make mat equal to target by rotating mat in 90-degree increments, or false otherwise.

 

Example 1:

Input: mat = [[0,1],[1,0]], target = [[1,0],[0,1]]
Output: true
Explanation: We can rotate mat 90 degrees clockwise to make mat equal target.

Example 2:

Input: mat = [[0,1],[1,1]], target = [[1,0],[0,1]]
Output: false
Explanation: It is impossible to make mat equal to target by rotating mat.

Example 3:

Input: mat = [[0,0,0],[0,1,0],[1,1,1]], target = [[1,1,1],[0,1,0],[0,0,0]]
Output: true
Explanation: We can rotate mat 90 degrees clockwise two times to make mat equal target.

 

Constraints:

  • n == mat.length == target.length
  • n == mat[i].length == target[i].length
  • 1 <= n <= 10
  • mat[i][j] and target[i][j] are either 0 or 1.

Solutions

  • class Solution {
        public boolean findRotation(int[][] mat, int[][] target) {
            int times = 4;
            while (times-- > 0) {
                if (equals(mat, target)) {
                    return true;
                }
                rotate(mat);
            }
            return false;
        }
    
        private void rotate(int[][] matrix) {
            int n = matrix.length;
            for (int i = 0; i < n / 2; ++i) {
                for (int j = i; j < n - 1 - i; ++j) {
                    int t = matrix[i][j];
                    matrix[i][j] = matrix[n - j - 1][i];
                    matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
                    matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
                    matrix[j][n - i - 1] = t;
                }
            }
        }
    
        private boolean equals(int[][] nums1, int[][] nums2) {
            int n = nums1.length;
            for (int i = 0; i < n; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (nums1[i][j] != nums2[i][j]) {
                        return false;
                    }
                }
            }
            return true;
        }
    }
    
  • class Solution {
    public:
        bool findRotation(vector<vector<int>>& mat, vector<vector<int>>& target) {
            int n = mat.size();
            for (int k = 0; k < 4; ++k) {
                vector<vector<int>> g(n, vector<int>(n));
                for (int i = 0; i < n; ++i)
                    for (int j = 0; j < n; ++j)
                        g[i][j] = mat[j][n - i - 1];
                if (g == target) return true;
                mat = g;
            }
            return false;
        }
    };
    
  • class Solution:
        def findRotation(self, mat: List[List[int]], target: List[List[int]]) -> bool:
            def rotate(matrix):
                n = len(matrix)
                for i in range(n // 2):
                    for j in range(i, n - 1 - i):
                        t = matrix[i][j]
                        matrix[i][j] = matrix[n - j - 1][i]
                        matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1]
                        matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1]
                        matrix[j][n - i - 1] = t
    
            for _ in range(4):
                if mat == target:
                    return True
                rotate(mat)
            return False
    
    
  • func findRotation(mat [][]int, target [][]int) bool {
    	n := len(mat)
    	for k := 0; k < 4; k++ {
    		g := make([][]int, n)
    		for i := range g {
    			g[i] = make([]int, n)
    		}
    		for i := 0; i < n; i++ {
    			for j := 0; j < n; j++ {
    				g[i][j] = mat[j][n-i-1]
    			}
    		}
    		if equals(g, target) {
    			return true
    		}
    		mat = g
    	}
    	return false
    }
    
    func equals(a, b [][]int) bool {
    	for i, row := range a {
    		for j, v := range row {
    			if v != b[i][j] {
    				return false
    			}
    		}
    	}
    	return true
    }
    
  • function findRotation(mat: number[][], target: number[][]): boolean {
        for (let k = 0; k < 4; k++) {
            rotate(mat);
            if (isEqual(mat, target)) {
                return true;
            }
        }
        return false;
    }
    
    function isEqual(A: number[][], B: number[][]) {
        const n = A.length;
        for (let i = 0; i < n; i++) {
            for (let j = 0; j < n; j++) {
                if (A[i][j] !== B[i][j]) {
                    return false;
                }
            }
        }
        return true;
    }
    
    function rotate(matrix: number[][]): void {
        const n = matrix.length;
        for (let i = 0; i < n >> 1; i++) {
            for (let j = 0; j < (n + 1) >> 1; j++) {
                [
                    matrix[i][j],
                    matrix[n - 1 - j][i],
                    matrix[n - 1 - i][n - 1 - j],
                    matrix[j][n - 1 - i],
                ] = [
                    matrix[n - 1 - j][i],
                    matrix[n - 1 - i][n - 1 - j],
                    matrix[j][n - 1 - i],
                    matrix[i][j],
                ];
            }
        }
    }
    
    
  • impl Solution {
        pub fn find_rotation(mat: Vec<Vec<i32>>, target: Vec<Vec<i32>>) -> bool {
            let n = mat.len();
            let mut is_equal = [true; 4];
            for i in 0..n {
                for j in 0..n {
                    if is_equal[0] && mat[i][j] != target[i][j] {
                        is_equal[0] = false;
                    }
                    if is_equal[1] && mat[i][j] != target[j][n - 1 - i] {
                        is_equal[1] = false;
                    }
                    if is_equal[2] && mat[i][j] != target[n - 1 - i][n - 1 - j] {
                        is_equal[2] = false;
                    }
                    if is_equal[3] && mat[i][j] != target[n - 1 - j][i] {
                        is_equal[3] = false;
                    }
                }
            }
            is_equal.into_iter().any(|&v| v)
        }
    }
    
    

All Problems

All Solutions