Welcome to Subscribe On Youtube
1855. Maximum Distance Between a Pair of Values
Description
You are given two non-increasing 0-indexed integer arrays nums1
and nums2
.
A pair of indices (i, j)
, where 0 <= i < nums1.length
and 0 <= j < nums2.length
, is valid if both i <= j
and nums1[i] <= nums2[j]
. The distance of the pair is j - i
.
Return the maximum distance of any valid pair (i, j)
. If there are no valid pairs, return 0
.
An array arr
is non-increasing if arr[i-1] >= arr[i]
for every 1 <= i < arr.length
.
Example 1:
Input: nums1 = [55,30,5,4,2], nums2 = [100,20,10,10,5] Output: 2 Explanation: The valid pairs are (0,0), (2,2), (2,3), (2,4), (3,3), (3,4), and (4,4). The maximum distance is 2 with pair (2,4).
Example 2:
Input: nums1 = [2,2,2], nums2 = [10,10,1] Output: 1 Explanation: The valid pairs are (0,0), (0,1), and (1,1). The maximum distance is 1 with pair (0,1).
Example 3:
Input: nums1 = [30,29,19,5], nums2 = [25,25,25,25,25] Output: 2 Explanation: The valid pairs are (2,2), (2,3), (2,4), (3,3), and (3,4). The maximum distance is 2 with pair (2,4).
Constraints:
1 <= nums1.length, nums2.length <= 105
1 <= nums1[i], nums2[j] <= 105
- Both
nums1
andnums2
are non-increasing.
Solutions
Solution 1: Binary Search
Assume the lengths of $nums1$ and $nums2$ are $m$ and $n$ respectively.
Traverse array $nums1$, for each number $nums1[i]$, perform a binary search for numbers in $nums2$ in the range $[i,n)$, find the last position $j$ that is greater than or equal to $nums1[i]$, calculate the distance between this position and $i$, and update the maximum distance value $ans$.
The time complexity is $O(m \times \log n)$, where $m$ and $n$ are the lengths of $nums1$ and $nums2$ respectively. The space complexity is $O(1)$.
-
class Solution { public int maxDistance(int[] nums1, int[] nums2) { int ans = 0; int m = nums1.length, n = nums2.length; for (int i = 0; i < m; ++i) { int left = i, right = n - 1; while (left < right) { int mid = (left + right + 1) >> 1; if (nums2[mid] >= nums1[i]) { left = mid; } else { right = mid - 1; } } ans = Math.max(ans, left - i); } return ans; } }
-
class Solution { public: int maxDistance(vector<int>& nums1, vector<int>& nums2) { int ans = 0; reverse(nums2.begin(), nums2.end()); for (int i = 0; i < nums1.size(); ++i) { int j = nums2.size() - (lower_bound(nums2.begin(), nums2.end(), nums1[i]) - nums2.begin()) - 1; ans = max(ans, j - i); } return ans; } };
-
class Solution: def maxDistance(self, nums1: List[int], nums2: List[int]) -> int: ans = 0 nums2 = nums2[::-1] for i, v in enumerate(nums1): j = len(nums2) - bisect_left(nums2, v) - 1 ans = max(ans, j - i) return ans
-
func maxDistance(nums1 []int, nums2 []int) int { ans, n := 0, len(nums2) for i, num := range nums1 { left, right := i, n-1 for left < right { mid := (left + right + 1) >> 1 if nums2[mid] >= num { left = mid } else { right = mid - 1 } } if ans < left-i { ans = left - i } } return ans }
-
function maxDistance(nums1: number[], nums2: number[]): number { let ans = 0; let m = nums1.length; let n = nums2.length; for (let i = 0; i < m; ++i) { let left = i; let right = n - 1; while (left < right) { const mid = (left + right + 1) >> 1; if (nums2[mid] >= nums1[i]) { left = mid; } else { right = mid - 1; } } ans = Math.max(ans, left - i); } return ans; }
-
/** * @param {number[]} nums1 * @param {number[]} nums2 * @return {number} */ var maxDistance = function (nums1, nums2) { let ans = 0; let m = nums1.length; let n = nums2.length; for (let i = 0; i < m; ++i) { let left = i; let right = n - 1; while (left < right) { const mid = (left + right + 1) >> 1; if (nums2[mid] >= nums1[i]) { left = mid; } else { right = mid - 1; } } ans = Math.max(ans, left - i); } return ans; };
-
impl Solution { pub fn max_distance(nums1: Vec<i32>, nums2: Vec<i32>) -> i32 { let m = nums1.len(); let n = nums2.len(); let mut res = 0; for i in 0..m { let mut left = i; let mut right = n; while left < right { let mid = left + (right - left) / 2; if nums2[mid] >= nums1[i] { left = mid + 1; } else { right = mid; } } res = res.max((left - i - 1) as i32); } res } }