Welcome to Subscribe On Youtube
1808. Maximize Number of Nice Divisors
Description
You are given a positive integer primeFactors
. You are asked to construct a positive integer n
that satisfies the following conditions:
- The number of prime factors of
n
(not necessarily distinct) is at mostprimeFactors
. - The number of nice divisors of
n
is maximized. Note that a divisor ofn
is nice if it is divisible by every prime factor ofn
. For example, ifn = 12
, then its prime factors are[2,2,3]
, then6
and12
are nice divisors, while3
and4
are not.
Return the number of nice divisors of n
. Since that number can be too large, return it modulo 109 + 7
.
Note that a prime number is a natural number greater than 1
that is not a product of two smaller natural numbers. The prime factors of a number n
is a list of prime numbers such that their product equals n
.
Example 1:
Input: primeFactors = 5 Output: 6 Explanation: 200 is a valid value of n. It has 5 prime factors: [2,2,2,5,5], and it has 6 nice divisors: [10,20,40,50,100,200]. There is not other value of n that has at most 5 prime factors and more nice divisors.
Example 2:
Input: primeFactors = 8 Output: 18
Constraints:
1 <= primeFactors <= 109
Solutions
Solution 1: Problem Transformation + Fast Power
We can factorize $n$ into prime factors, i.e., $n = a_1^{k_1} \times a_2^{k_2} \times\cdots \times a_m^{k_m}$, where $a_i$ is a prime factor and $k_i$ is the exponent of the prime factor $a_i$. Since the number of prime factors of $n$ does not exceed primeFactors
, we have $k_1 + k_2 + \cdots + k_m \leq primeFactors$.
According to the problem description, we know that a good factor of $n$ must be divisible by all prime factors, which means that a good factor of $n$ needs to include $a_1 \times a_2 \times \cdots \times a_m$ as a factor. Then the number of good factors $k= k_1 \times k_2 \times \cdots \times k_m$, i.e., $k$ is the product of $k_1, k_2, \cdots, k_m$. To maximize the number of good factors, we need to split primeFactors
into $k_1, k_2, \cdots, k_m$ to make $k_1 \times k_2 \times \cdots \times k_m$ the largest. Therefore, the problem is transformed into: split the integer primeFactors
into the product of several integers to maximize the product.
Next, we just need to discuss different cases.
- If $primeFactors \lt 4$, then directly return
primeFactors
. - If $primeFactors$ is a multiple of $3$, then we split
primeFactors
into multiples of $3$, i.e., $3^{\frac{primeFactors}{3}}$. - If $primeFactors$ modulo $3$ equals $1$, then we split
primeFactors
into $\frac{primeFactors}{3} - 1$ multiples of $3$, and then multiply by $4$, i.e., $3^{\frac{primeFactors}{3} - 1} \times 4$. - If $primeFactors$ modulo $3$ equals $2$, then we split
primeFactors
into $\frac{primeFactors}{3}$ multiples of $3$, and then multiply by $2$, i.e., $3^{\frac{primeFactors}{3}} \times 2$.
In the above process, we use fast power to calculate the modulus.
The time complexity is $O(\log n)$, and the space complexity is $O(1)$.
-
class Solution { private final int mod = (int) 1e9 + 7; public int maxNiceDivisors(int primeFactors) { if (primeFactors < 4) { return primeFactors; } if (primeFactors % 3 == 0) { return qpow(3, primeFactors / 3); } if (primeFactors % 3 == 1) { return (int) (4L * qpow(3, primeFactors / 3 - 1) % mod); } return 2 * qpow(3, primeFactors / 3) % mod; } private int qpow(long a, long n) { long ans = 1; for (; n > 0; n >>= 1) { if ((n & 1) == 1) { ans = ans * a % mod; } a = a * a % mod; } return (int) ans; } }
-
class Solution { public: int maxNiceDivisors(int primeFactors) { if (primeFactors < 4) { return primeFactors; } const int mod = 1e9 + 7; auto qpow = [&](long long a, long long n) { long long ans = 1; for (; n; n >>= 1) { if (n & 1) { ans = ans * a % mod; } a = a * a % mod; } return (int) ans; }; if (primeFactors % 3 == 0) { return qpow(3, primeFactors / 3); } if (primeFactors % 3 == 1) { return qpow(3, primeFactors / 3 - 1) * 4L % mod; } return qpow(3, primeFactors / 3) * 2 % mod; } };
-
class Solution: def maxNiceDivisors(self, primeFactors: int) -> int: mod = 10**9 + 7 if primeFactors < 4: return primeFactors if primeFactors % 3 == 0: return pow(3, primeFactors // 3, mod) % mod if primeFactors % 3 == 1: return 4 * pow(3, primeFactors // 3 - 1, mod) % mod return 2 * pow(3, primeFactors // 3, mod) % mod
-
func maxNiceDivisors(primeFactors int) int { if primeFactors < 4 { return primeFactors } const mod = 1e9 + 7 qpow := func(a, n int) int { ans := 1 for ; n > 0; n >>= 1 { if n&1 == 1 { ans = ans * a % mod } a = a * a % mod } return ans } if primeFactors%3 == 0 { return qpow(3, primeFactors/3) } if primeFactors%3 == 1 { return qpow(3, primeFactors/3-1) * 4 % mod } return qpow(3, primeFactors/3) * 2 % mod }
-
/** * @param {number} primeFactors * @return {number} */ var maxNiceDivisors = function (primeFactors) { if (primeFactors < 4) { return primeFactors; } const mod = 1e9 + 7; const qpow = (a, n) => { let ans = 1; for (; n; n >>= 1) { if (n & 1) { ans = Number((BigInt(ans) * BigInt(a)) % BigInt(mod)); } a = Number((BigInt(a) * BigInt(a)) % BigInt(mod)); } return ans; }; const k = Math.floor(primeFactors / 3); if (primeFactors % 3 === 0) { return qpow(3, k); } if (primeFactors % 3 === 1) { return (4 * qpow(3, k - 1)) % mod; } return (2 * qpow(3, k)) % mod; };