Welcome to Subscribe On Youtube

1803. Count Pairs With XOR in a Range

Description

Given a (0-indexed) integer array nums and two integers low and high, return the number of nice pairs.

A nice pair is a pair (i, j) where 0 <= i < j < nums.length and low <= (nums[i] XOR nums[j]) <= high.

 

Example 1:

Input: nums = [1,4,2,7], low = 2, high = 6
Output: 6
Explanation: All nice pairs (i, j) are as follows:
    - (0, 1): nums[0] XOR nums[1] = 5 
    - (0, 2): nums[0] XOR nums[2] = 3
    - (0, 3): nums[0] XOR nums[3] = 6
    - (1, 2): nums[1] XOR nums[2] = 6
    - (1, 3): nums[1] XOR nums[3] = 3
    - (2, 3): nums[2] XOR nums[3] = 5

Example 2:

Input: nums = [9,8,4,2,1], low = 5, high = 14
Output: 8
Explanation: All nice pairs (i, j) are as follows:
​​​​​    - (0, 2): nums[0] XOR nums[2] = 13
    - (0, 3): nums[0] XOR nums[3] = 11
    - (0, 4): nums[0] XOR nums[4] = 8
    - (1, 2): nums[1] XOR nums[2] = 12
    - (1, 3): nums[1] XOR nums[3] = 10
    - (1, 4): nums[1] XOR nums[4] = 9
    - (2, 3): nums[2] XOR nums[3] = 6
    - (2, 4): nums[2] XOR nums[4] = 5

 

Constraints:

  • 1 <= nums.length <= 2 * 104
  • 1 <= nums[i] <= 2 * 104
  • 1 <= low <= high <= 2 * 104

Solutions

Solution 1: 0-1 Trie

For this kind of problem that counts the interval $[low, high]$, we can consider converting it into counting $[0, high]$ and $[0, low - 1]$, and then subtracting the latter from the former to get the answer.

In this problem, we can count how many pairs of numbers have an XOR value less than $high+1$, and then count how many pairs of numbers have an XOR value less than $low$. The difference between these two counts is the number of pairs whose XOR value is in the interval $[low, high]$.

Moreover, for array XOR counting problems, we can usually use a “0-1 Trie” to solve them.

The definition of the Trie node is as follows:

  • children[0] and children[1] represent the left and right child nodes of the current node, respectively;
  • cnt represents the number of numbers ending with the current node.

In the Trie, we also define the following two functions:

One function is $insert(x)$, which inserts the number $x$ into the Trie. This function inserts the number $x$ into the “0-1 Trie” in the order of binary bits from high to low. If the current binary bit is $0$, it is inserted into the left child node, otherwise, it is inserted into the right child node. Then the count value $cnt$ of the node is increased by $1$.

Another function is $search(x, limit)$, which searches for the count of numbers in the Trie that have an XOR value with $x$ less than $limit$. This function starts from the root node node of the Trie, traverses the binary bits of $x$ from high to low, and denotes the current binary bit of $x$ as $v$. If the current binary bit of $limit$ is $1$, we can directly add the count value $cnt$ of the child node that has the same binary bit $v$ as $x$ to the answer, and then move the current node to the child node that has a different binary bit $v$ from $x$, i.e., node = node.children[v ^ 1]. Continue to traverse the next bit. If the current binary bit of $limit$ is $0$, we can only move the current node to the child node that has the same binary bit $v$ as $x$, i.e., node = node.children[v]. Continue to traverse the next bit. After traversing the binary bits of $x$, return the answer.

With the above two functions, we can solve this problem.

We traverse the array nums. For each number $x$, we first search in the Trie for the count of numbers that have an XOR value with $x$ less than $high+1$, and then search in the Trie for the count of pairs that have an XOR value with $x$ less than $low$, and add the difference between the two counts to the answer. Then insert $x$ into the Trie. Continue to traverse the next number $x$ until the array nums is traversed. Finally, return the answer.

The time complexity is $O(n \times \log M)$, and the space complexity is $O(n \times \log M)$. Here, $n$ is the length of the array nums, and $M$ is the maximum value in the array nums. In this problem, we directly take $\log M = 16$.

  • class Trie {
        private Trie[] children = new Trie[2];
        private int cnt;
    
        public void insert(int x) {
            Trie node = this;
            for (int i = 15; i >= 0; --i) {
                int v = (x >> i) & 1;
                if (node.children[v] == null) {
                    node.children[v] = new Trie();
                }
                node = node.children[v];
                ++node.cnt;
            }
        }
    
        public int search(int x, int limit) {
            Trie node = this;
            int ans = 0;
            for (int i = 15; i >= 0 && node != null; --i) {
                int v = (x >> i) & 1;
                if (((limit >> i) & 1) == 1) {
                    if (node.children[v] != null) {
                        ans += node.children[v].cnt;
                    }
                    node = node.children[v ^ 1];
                } else {
                    node = node.children[v];
                }
            }
            return ans;
        }
    }
    
    class Solution {
        public int countPairs(int[] nums, int low, int high) {
            Trie trie = new Trie();
            int ans = 0;
            for (int x : nums) {
                ans += trie.search(x, high + 1) - trie.search(x, low);
                trie.insert(x);
            }
            return ans;
        }
    }
    
  • class Trie {
    public:
        Trie()
            : children(2)
            , cnt(0) {}
    
        void insert(int x) {
            Trie* node = this;
            for (int i = 15; ~i; --i) {
                int v = x >> i & 1;
                if (!node->children[v]) {
                    node->children[v] = new Trie();
                }
                node = node->children[v];
                ++node->cnt;
            }
        }
    
        int search(int x, int limit) {
            Trie* node = this;
            int ans = 0;
            for (int i = 15; ~i && node; --i) {
                int v = x >> i & 1;
                if (limit >> i & 1) {
                    if (node->children[v]) {
                        ans += node->children[v]->cnt;
                    }
                    node = node->children[v ^ 1];
                } else {
                    node = node->children[v];
                }
            }
            return ans;
        }
    
    private:
        vector<Trie*> children;
        int cnt;
    };
    
    class Solution {
    public:
        int countPairs(vector<int>& nums, int low, int high) {
            Trie* tree = new Trie();
            int ans = 0;
            for (int& x : nums) {
                ans += tree->search(x, high + 1) - tree->search(x, low);
                tree->insert(x);
            }
            return ans;
        }
    };
    
  • class Trie:
        def __init__(self):
            self.children = [None] * 2
            self.cnt = 0
    
        def insert(self, x):
            node = self
            for i in range(15, -1, -1):
                v = x >> i & 1
                if node.children[v] is None:
                    node.children[v] = Trie()
                node = node.children[v]
                node.cnt += 1
    
        def search(self, x, limit):
            node = self
            ans = 0
            for i in range(15, -1, -1):
                if node is None:
                    return ans
                v = x >> i & 1
                if limit >> i & 1:
                    if node.children[v]:
                        ans += node.children[v].cnt
                    node = node.children[v ^ 1]
                else:
                    node = node.children[v]
            return ans
    
    
    class Solution:
        def countPairs(self, nums: List[int], low: int, high: int) -> int:
            ans = 0
            tree = Trie()
            for x in nums:
                ans += tree.search(x, high + 1) - tree.search(x, low)
                tree.insert(x)
            return ans
    
    
  • type Trie struct {
    	children [2]*Trie
    	cnt      int
    }
    
    func newTrie() *Trie {
    	return &Trie{}
    }
    
    func (this *Trie) insert(x int) {
    	node := this
    	for i := 15; i >= 0; i-- {
    		v := (x >> i) & 1
    		if node.children[v] == nil {
    			node.children[v] = newTrie()
    		}
    		node = node.children[v]
    		node.cnt++
    	}
    }
    
    func (this *Trie) search(x, limit int) (ans int) {
    	node := this
    	for i := 15; i >= 0 && node != nil; i-- {
    		v := (x >> i) & 1
    		if (limit >> i & 1) == 1 {
    			if node.children[v] != nil {
    				ans += node.children[v].cnt
    			}
    			node = node.children[v^1]
    		} else {
    			node = node.children[v]
    		}
    	}
    	return
    }
    
    func countPairs(nums []int, low int, high int) (ans int) {
    	tree := newTrie()
    	for _, x := range nums {
    		ans += tree.search(x, high+1) - tree.search(x, low)
    		tree.insert(x)
    	}
    	return
    }
    

All Problems

All Solutions