Welcome to Subscribe On Youtube
1802. Maximum Value at a Given Index in a Bounded Array
Description
You are given three positive integers: n
, index
, and maxSum
. You want to construct an array nums
(0-indexed) that satisfies the following conditions:
nums.length == n
nums[i]
is a positive integer where0 <= i < n
.abs(nums[i] - nums[i+1]) <= 1
where0 <= i < n-1
.- The sum of all the elements of
nums
does not exceedmaxSum
. nums[index]
is maximized.
Return nums[index]
of the constructed array.
Note that abs(x)
equals x
if x >= 0
, and -x
otherwise.
Example 1:
Input: n = 4, index = 2, maxSum = 6 Output: 2 Explanation: nums = [1,2,2,1] is one array that satisfies all the conditions. There are no arrays that satisfy all the conditions and have nums[2] == 3, so 2 is the maximum nums[2].
Example 2:
Input: n = 6, index = 1, maxSum = 10 Output: 3
Constraints:
1 <= n <= maxSum <= 109
0 <= index < n
Solutions
Solution 1: Binary Search
According to the problem description, if we determine the value of $nums[index]$ as $x$, we can find a minimum array sum. That is, the elements on the left side of $index$ in the array decrease from $x-1$ to $1$, and if there are remaining elements, the remaining elements are all $1$; similarly, the elements at $index$ and on the right side of the array decrease from $x$ to $1$, and if there are remaining elements, the remaining elements are all $1$.
In this way, we can calculate the sum of the array. If the sum is less than or equal to $maxSum$, then the current $x$ is valid. As $x$ increases, the sum of the array will also increase, so we can use the binary search method to find the maximum $x$ that meets the conditions.
To facilitate the calculation of the sum of the elements on the left and right sides of the array, we define a function $sum(x, cnt)$, which represents the sum of an array with $cnt$ elements and a maximum value of $x$. The function $sum(x, cnt)$ can be divided into two cases:
- If $x \geq cnt$, then the sum of the array is $\frac{(x + x - cnt + 1) \times cnt}{2}$
- If $x \lt cnt$, then the sum of the array is $\frac{(x + 1) \times x}{2} + cnt - x$
Next, define the left boundary of the binary search as $left = 1$, the right boundary as $right = maxSum$, and then binary search for the value $mid$ of $nums[index]$. If $sum(mid - 1, index) + sum(mid, n - index) \leq maxSum$, then the current $mid$ is valid, we can update $left$ to $mid$, otherwise we update $right$ to $mid - 1$.
Finally, return $left$ as the answer.
The time complexity is $O(\log M)$, where $M=maxSum$. The space complexity is $O(1)$.
-
class Solution { public int maxValue(int n, int index, int maxSum) { int left = 1, right = maxSum; while (left < right) { int mid = (left + right + 1) >>> 1; if (sum(mid - 1, index) + sum(mid, n - index) <= maxSum) { left = mid; } else { right = mid - 1; } } return left; } private long sum(long x, int cnt) { return x >= cnt ? (x + x - cnt + 1) * cnt / 2 : (x + 1) * x / 2 + cnt - x; } }
-
class Solution { public: int maxValue(int n, int index, int maxSum) { auto sum = [](long x, int cnt) { return x >= cnt ? (x + x - cnt + 1) * cnt / 2 : (x + 1) * x / 2 + cnt - x; }; int left = 1, right = maxSum; while (left < right) { int mid = (left + right + 1) >> 1; if (sum(mid - 1, index) + sum(mid, n - index) <= maxSum) { left = mid; } else { right = mid - 1; } } return left; } };
-
class Solution: def maxValue(self, n: int, index: int, maxSum: int) -> int: def sum(x, cnt): return ( (x + x - cnt + 1) * cnt // 2 if x >= cnt else (x + 1) * x // 2 + cnt - x ) left, right = 1, maxSum while left < right: mid = (left + right + 1) >> 1 if sum(mid - 1, index) + sum(mid, n - index) <= maxSum: left = mid else: right = mid - 1 return left
-
func maxValue(n int, index int, maxSum int) int { sum := func(x, cnt int) int { if x >= cnt { return (x + x - cnt + 1) * cnt / 2 } return (x+1)*x/2 + cnt - x } return sort.Search(maxSum, func(x int) bool { x++ return sum(x-1, index)+sum(x, n-index) > maxSum }) }