Welcome to Subscribe On Youtube
1771. Maximize Palindrome Length From Subsequences
Description
You are given two strings, word1
and word2
. You want to construct a string in the following manner:
- Choose some non-empty subsequence
subsequence1
fromword1
. - Choose some non-empty subsequence
subsequence2
fromword2
. - Concatenate the subsequences:
subsequence1 + subsequence2
, to make the string.
Return the length of the longest palindrome that can be constructed in the described manner. If no palindromes can be constructed, return 0
.
A subsequence of a string s
is a string that can be made by deleting some (possibly none) characters from s
without changing the order of the remaining characters.
A palindrome is a string that reads the same forward as well as backward.
Example 1:
Input: word1 = "cacb", word2 = "cbba" Output: 5 Explanation: Choose "ab" from word1 and "cba" from word2 to make "abcba", which is a palindrome.
Example 2:
Input: word1 = "ab", word2 = "ab" Output: 3 Explanation: Choose "ab" from word1 and "a" from word2 to make "aba", which is a palindrome.
Example 3:
Input: word1 = "aa", word2 = "bb" Output: 0 Explanation: You cannot construct a palindrome from the described method, so return 0.
Constraints:
1 <= word1.length, word2.length <= 1000
word1
andword2
consist of lowercase English letters.
Solutions
Solution 1: Dynamic Programming
First, we concatenate strings word1
and word2
to get string $s$. Then we can transform the problem into finding the length of the longest palindromic subsequence in string $s$. However, when calculating the final answer, we need to ensure that at least one character in the palindrome string comes from word1
and another character comes from word2
.
We define $f[i][j]$ as the length of the longest palindromic subsequence in the substring of string $s$ with index range $[i, j]$.
If $s[i] = s[j]$, then $s[i]$ and $s[j]$ must be in the longest palindromic subsequence, at this time $f[i][j] = f[i + 1][j - 1] + 2$. At this point, we also need to judge whether $s[i]$ and $s[j]$ come from word1
and word2
. If so, we update the maximum value of the answer to $ans=\max(ans, f[i][j])$.
If $s[i] \neq s[j]$, then $s[i]$ and $s[j]$ will definitely not appear in the longest palindromic subsequence at the same time, at this time $f[i][j] = max(f[i + 1][j], f[i][j - 1])$.
Finally, we return the answer.
The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the length of string $s$.
-
class Solution { public int longestPalindrome(String word1, String word2) { String s = word1 + word2; int n = s.length(); int[][] f = new int[n][n]; for (int i = 0; i < n; ++i) { f[i][i] = 1; } int ans = 0; for (int i = n - 2; i >= 0; --i) { for (int j = i + 1; j < n; ++j) { if (s.charAt(i) == s.charAt(j)) { f[i][j] = f[i + 1][j - 1] + 2; if (i < word1.length() && j >= word1.length()) { ans = Math.max(ans, f[i][j]); } } else { f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]); } } } return ans; } }
-
class Solution { public: int longestPalindrome(string word1, string word2) { string s = word1 + word2; int n = s.size(); int f[n][n]; memset(f, 0, sizeof f); for (int i = 0; i < n; ++i) f[i][i] = 1; int ans = 0; for (int i = n - 2; ~i; --i) { for (int j = i + 1; j < n; ++j) { if (s[i] == s[j]) { f[i][j] = f[i + 1][j - 1] + 2; if (i < word1.size() && j >= word1.size()) { ans = max(ans, f[i][j]); } } else { f[i][j] = max(f[i + 1][j], f[i][j - 1]); } } } return ans; } };
-
class Solution: def longestPalindrome(self, word1: str, word2: str) -> int: s = word1 + word2 n = len(s) f = [[0] * n for _ in range(n)] for i in range(n): f[i][i] = 1 ans = 0 for i in range(n - 2, -1, -1): for j in range(i + 1, n): if s[i] == s[j]: f[i][j] = f[i + 1][j - 1] + 2 if i < len(word1) <= j: ans = max(ans, f[i][j]) else: f[i][j] = max(f[i + 1][j], f[i][j - 1]) return ans
-
func longestPalindrome(word1 string, word2 string) (ans int) { s := word1 + word2 n := len(s) f := make([][]int, n) for i := range f { f[i] = make([]int, n) f[i][i] = 1 } for i := n - 2; i >= 0; i-- { for j := i + 1; j < n; j++ { if s[i] == s[j] { f[i][j] = f[i+1][j-1] + 2 if i < len(word1) && j >= len(word1) && ans < f[i][j] { ans = f[i][j] } } else { f[i][j] = max(f[i+1][j], f[i][j-1]) } } } return ans }
-
function longestPalindrome(word1: string, word2: string): number { const s = word1 + word2; const n = s.length; const f: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => 0)); for (let i = 0; i < n; ++i) { f[i][i] = 1; } let ans = 0; for (let i = n - 2; ~i; --i) { for (let j = i + 1; j < n; ++j) { if (s[i] === s[j]) { f[i][j] = f[i + 1][j - 1] + 2; if (i < word1.length && j >= word1.length) { ans = Math.max(ans, f[i][j]); } } else { f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]); } } } return ans; }
-
impl Solution { pub fn longest_palindrome(word1: String, word2: String) -> i32 { let s: Vec<char> = format!("{}{}", word1, word2).chars().collect(); let n = s.len(); let mut f = vec![vec![0; n]; n]; for i in 0..n { f[i][i] = 1; } let mut ans = 0; for i in (0..n - 1).rev() { for j in i + 1..n { if s[i] == s[j] { f[i][j] = f[i + 1][j - 1] + 2; if i < word1.len() && j >= word1.len() { ans = ans.max(f[i][j]); } } else { f[i][j] = f[i + 1][j].max(f[i][j - 1]); } } } ans } }