Welcome to Subscribe On Youtube
1770. Maximum Score from Performing Multiplication Operations
Description
You are given two 0-indexed integer arrays nums
and multipliers
of size n
and m
respectively, where n >= m
.
You begin with a score of 0
. You want to perform exactly m
operations. On the ith
operation (0-indexed) you will:
- Choose one integer
x
from either the start or the end of the arraynums
. - Add
multipliers[i] * x
to your score.- Note that
multipliers[0]
corresponds to the first operation,multipliers[1]
to the second operation, and so on.
- Note that
- Remove
x
fromnums
.
Return the maximum score after performing m
operations.
Example 1:
Input: nums = [1,2,3], multipliers = [3,2,1] Output: 14 Explanation: An optimal solution is as follows: - Choose from the end, [1,2,3], adding 3 * 3 = 9 to the score. - Choose from the end, [1,2], adding 2 * 2 = 4 to the score. - Choose from the end, [1], adding 1 * 1 = 1 to the score. The total score is 9 + 4 + 1 = 14.
Example 2:
Input: nums = [-5,-3,-3,-2,7,1], multipliers = [-10,-5,3,4,6] Output: 102 Explanation: An optimal solution is as follows: - Choose from the start, [-5,-3,-3,-2,7,1], adding -5 * -10 = 50 to the score. - Choose from the start, [-3,-3,-2,7,1], adding -3 * -5 = 15 to the score. - Choose from the start, [-3,-2,7,1], adding -3 * 3 = -9 to the score. - Choose from the end, [-2,7,1], adding 1 * 4 = 4 to the score. - Choose from the end, [-2,7], adding 7 * 6 = 42 to the score. The total score is 50 + 15 - 9 + 4 + 42 = 102.
Constraints:
n == nums.length
m == multipliers.length
1 <= m <= 300
m <= n <= 105
-1000 <= nums[i], multipliers[i] <= 1000
Solutions
-
class Solution { private Integer[][] f; private int[] multipliers; private int[] nums; private int n; private int m; public int maximumScore(int[] nums, int[] multipliers) { n = nums.length; m = multipliers.length; f = new Integer[m][m]; this.nums = nums; this.multipliers = multipliers; return dfs(0, 0); } private int dfs(int i, int j) { if (i >= m || j >= m || (i + j) >= m) { return 0; } if (f[i][j] != null) { return f[i][j]; } int k = i + j; int a = dfs(i + 1, j) + nums[i] * multipliers[k]; int b = dfs(i, j + 1) + nums[n - 1 - j] * multipliers[k]; f[i][j] = Math.max(a, b); return f[i][j]; } }
-
class Solution { public: int maximumScore(vector<int>& nums, vector<int>& multipliers) { int n = nums.size(), m = multipliers.size(); int f[m][m]; memset(f, 0x3f, sizeof f); function<int(int, int)> dfs = [&](int i, int j) -> int { if (i >= m || j >= m || (i + j) >= m) return 0; if (f[i][j] != 0x3f3f3f3f) return f[i][j]; int k = i + j; int a = dfs(i + 1, j) + nums[i] * multipliers[k]; int b = dfs(i, j + 1) + nums[n - j - 1] * multipliers[k]; return f[i][j] = max(a, b); }; return dfs(0, 0); } };
-
class Solution: def maximumScore(self, nums: List[int], multipliers: List[int]) -> int: @cache def f(i, j, k): if k >= m or i >= n or j < 0: return 0 a = f(i + 1, j, k + 1) + nums[i] * multipliers[k] b = f(i, j - 1, k + 1) + nums[j] * multipliers[k] return max(a, b) n = len(nums) m = len(multipliers) return f(0, n - 1, 0)
-
func maximumScore(nums []int, multipliers []int) int { n, m := len(nums), len(multipliers) f := make([][]int, m) for i := range f { f[i] = make([]int, m) for j := range f[i] { f[i][j] = 1 << 30 } } var dfs func(i, j int) int dfs = func(i, j int) int { if i >= m || j >= m || i+j >= m { return 0 } if f[i][j] != 1<<30 { return f[i][j] } k := i + j a := dfs(i+1, j) + nums[i]*multipliers[k] b := dfs(i, j+1) + nums[n-j-1]*multipliers[k] f[i][j] = max(a, b) return f[i][j] } return dfs(0, 0) }
-
function maximumScore(nums: number[], multipliers: number[]): number { const inf = 1 << 30; const n = nums.length; const m = multipliers.length; const f = new Array(m + 1).fill(0).map(() => new Array(m + 1).fill(-inf)); f[0][0] = 0; let ans = -inf; for (let i = 0; i <= m; ++i) { for (let j = 0; j <= m - i; ++j) { const k = i + j - 1; if (i > 0) { f[i][j] = Math.max(f[i][j], f[i - 1][j] + nums[i - 1] * multipliers[k]); } if (j > 0) { f[i][j] = Math.max(f[i][j], f[i][j - 1] + nums[n - j] * multipliers[k]); } if (i + j === m) { ans = Math.max(ans, f[i][j]); } } } return ans; }