Welcome to Subscribe On Youtube

1761. Minimum Degree of a Connected Trio in a Graph

Description

You are given an undirected graph. You are given an integer n which is the number of nodes in the graph and an array edges, where each edges[i] = [ui, vi] indicates that there is an undirected edge between ui and vi.

A connected trio is a set of three nodes where there is an edge between every pair of them.

The degree of a connected trio is the number of edges where one endpoint is in the trio, and the other is not.

Return the minimum degree of a connected trio in the graph, or -1 if the graph has no connected trios.

 

Example 1:

Input: n = 6, edges = [[1,2],[1,3],[3,2],[4,1],[5,2],[3,6]]
Output: 3
Explanation: There is exactly one trio, which is [1,2,3]. The edges that form its degree are bolded in the figure above.

Example 2:

Input: n = 7, edges = [[1,3],[4,1],[4,3],[2,5],[5,6],[6,7],[7,5],[2,6]]
Output: 0
Explanation: There are exactly three trios:
1) [1,4,3] with degree 0.
2) [2,5,6] with degree 2.
3) [5,6,7] with degree 2.

 

Constraints:

  • 2 <= n <= 400
  • edges[i].length == 2
  • 1 <= edges.length <= n * (n-1) / 2
  • 1 <= ui, vi <= n
  • ui != vi
  • There are no repeated edges.

Solutions

  • class Solution {
        public int minTrioDegree(int n, int[][] edges) {
            boolean[][] g = new boolean[n][n];
            int[] deg = new int[n];
            for (var e : edges) {
                int u = e[0] - 1, v = e[1] - 1;
                g[u][v] = true;
                g[v][u] = true;
                ++deg[u];
                ++deg[v];
            }
            int ans = 1 << 30;
            for (int i = 0; i < n; ++i) {
                for (int j = i + 1; j < n; ++j) {
                    if (g[i][j]) {
                        for (int k = j + 1; k < n; ++k) {
                            if (g[i][k] && g[j][k]) {
                                ans = Math.min(ans, deg[i] + deg[j] + deg[k] - 6);
                            }
                        }
                    }
                }
            }
            return ans == 1 << 30 ? -1 : ans;
        }
    }
    
  • class Solution {
    public:
        int minTrioDegree(int n, vector<vector<int>>& edges) {
            bool g[n][n];
            memset(g, 0, sizeof g);
            int deg[n];
            memset(deg, 0, sizeof deg);
            for (auto& e : edges) {
                int u = e[0] - 1, v = e[1] - 1;
                g[u][v] = g[v][u] = true;
                deg[u]++, deg[v]++;
            }
            int ans = INT_MAX;
            for (int i = 0; i < n; ++i) {
                for (int j = i + 1; j < n; ++j) {
                    if (g[i][j]) {
                        for (int k = j + 1; k < n; ++k) {
                            if (g[j][k] && g[i][k]) {
                                ans = min(ans, deg[i] + deg[j] + deg[k] - 6);
                            }
                        }
                    }
                }
            }
            return ans == INT_MAX ? -1 : ans;
        }
    };
    
  • class Solution:
        def minTrioDegree(self, n: int, edges: List[List[int]]) -> int:
            g = [[False] * n for _ in range(n)]
            deg = [0] * n
            for u, v in edges:
                u, v = u - 1, v - 1
                g[u][v] = g[v][u] = True
                deg[u] += 1
                deg[v] += 1
            ans = inf
            for i in range(n):
                for j in range(i + 1, n):
                    if g[i][j]:
                        for k in range(j + 1, n):
                            if g[i][k] and g[j][k]:
                                ans = min(ans, deg[i] + deg[j] + deg[k] - 6)
            return -1 if ans == inf else ans
    
    
  • func minTrioDegree(n int, edges [][]int) int {
    	g := make([][]bool, n)
    	deg := make([]int, n)
    	for i := range g {
    		g[i] = make([]bool, n)
    	}
    	for _, e := range edges {
    		u, v := e[0]-1, e[1]-1
    		g[u][v], g[v][u] = true, true
    		deg[u]++
    		deg[v]++
    	}
    	ans := 1 << 30
    	for i := 0; i < n; i++ {
    		for j := i + 1; j < n; j++ {
    			if g[i][j] {
    				for k := j + 1; k < n; k++ {
    					if g[i][k] && g[j][k] {
    						ans = min(ans, deg[i]+deg[j]+deg[k]-6)
    					}
    				}
    			}
    		}
    	}
    	if ans == 1<<30 {
    		return -1
    	}
    	return ans
    }
    
  • function minTrioDegree(n: number, edges: number[][]): number {
        const g = Array.from({ length: n }, () => Array(n).fill(false));
        const deg: number[] = Array(n).fill(0);
        for (let [u, v] of edges) {
            u--;
            v--;
            g[u][v] = g[v][u] = true;
            ++deg[u];
            ++deg[v];
        }
        let ans = Infinity;
        for (let i = 0; i < n; ++i) {
            for (let j = i + 1; j < n; ++j) {
                if (g[i][j]) {
                    for (let k = j + 1; k < n; ++k) {
                        if (g[i][k] && g[j][k]) {
                            ans = Math.min(ans, deg[i] + deg[j] + deg[k] - 6);
                        }
                    }
                }
            }
        }
        return ans === Infinity ? -1 : ans;
    }
    
    

All Problems

All Solutions