Welcome to Subscribe On Youtube
1726. Tuple with Same Product
Description
Given an array nums
of distinct positive integers, return the number of tuples (a, b, c, d)
such that a * b = c * d
where a
, b
, c
, and d
are elements of nums
, and a != b != c != d
.
Example 1:
Input: nums = [2,3,4,6] Output: 8 Explanation: There are 8 valid tuples: (2,6,3,4) , (2,6,4,3) , (6,2,3,4) , (6,2,4,3) (3,4,2,6) , (4,3,2,6) , (3,4,6,2) , (4,3,6,2)
Example 2:
Input: nums = [1,2,4,5,10] Output: 16 Explanation: There are 16 valid tuples: (1,10,2,5) , (1,10,5,2) , (10,1,2,5) , (10,1,5,2) (2,5,1,10) , (2,5,10,1) , (5,2,1,10) , (5,2,10,1) (2,10,4,5) , (2,10,5,4) , (10,2,4,5) , (10,2,5,4) (4,5,2,10) , (4,5,10,2) , (5,4,2,10) , (5,4,10,2)
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 104
- All elements in
nums
are distinct.
Solutions
Solution 1: Combination + Hash Table
Assuming there are $n$ pairs of numbers, for any two pairs of numbers $a, b$ and $c, d$ that satisfy the condition $a \times b = c \times d$, there are a total of $\mathrm{C}_n^2 = \frac{n \times (n-1)}{2}$ such combinations.
According to the problem description, each combination that satisfies the above condition can form $8$ tuples that satisfy the problem requirements. Therefore, we can multiply the number of combinations with the same product by $8$ (equivalent to left shifting by $3$ bits) and add them up to get the result.
The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the length of the array.
-
class Solution { public int tupleSameProduct(int[] nums) { Map<Integer, Integer> cnt = new HashMap<>(); for (int i = 1; i < nums.length; ++i) { for (int j = 0; j < i; ++j) { int x = nums[i] * nums[j]; cnt.merge(x, 1, Integer::sum); } } int ans = 0; for (int v : cnt.values()) { ans += v * (v - 1) / 2; } return ans << 3; } }
-
class Solution { public: int tupleSameProduct(vector<int>& nums) { unordered_map<int, int> cnt; for (int i = 1; i < nums.size(); ++i) { for (int j = 0; j < i; ++j) { int x = nums[i] * nums[j]; ++cnt[x]; } } int ans = 0; for (auto& [_, v] : cnt) { ans += v * (v - 1) / 2; } return ans << 3; } };
-
class Solution: def tupleSameProduct(self, nums: List[int]) -> int: cnt = defaultdict(int) for i in range(1, len(nums)): for j in range(i): x = nums[i] * nums[j] cnt[x] += 1 return sum(v * (v - 1) // 2 for v in cnt.values()) << 3
-
func tupleSameProduct(nums []int) int { cnt := map[int]int{} for i := 1; i < len(nums); i++ { for j := 0; j < i; j++ { x := nums[i] * nums[j] cnt[x]++ } } ans := 0 for _, v := range cnt { ans += v * (v - 1) / 2 } return ans << 3 }
-
function tupleSameProduct(nums: number[]): number { const cnt: Map<number, number> = new Map(); for (let i = 1; i < nums.length; ++i) { for (let j = 0; j < i; ++j) { const x = nums[i] * nums[j]; cnt.set(x, (cnt.get(x) ?? 0) + 1); } } let ans = 0; for (const [_, v] of cnt) { ans += (v * (v - 1)) / 2; } return ans << 3; }
-
use std::collections::HashMap; impl Solution { pub fn tuple_same_product(nums: Vec<i32>) -> i32 { let mut cnt: HashMap<i32, i32> = HashMap::new(); let mut ans = 0; for i in 1..nums.len() { for j in 0..i { let x = nums[i] * nums[j]; *cnt.entry(x).or_insert(0) += 1; } } for v in cnt.values() { ans += (v * (v - 1)) / 2; } ans << 3 } }