Welcome to Subscribe On Youtube
1712. Ways to Split Array Into Three Subarrays
Description
A split of an integer array is good if:
- The array is split into three non-empty contiguous subarrays - named
left
,mid
,right
respectively from left to right. - The sum of the elements in
left
is less than or equal to the sum of the elements inmid
, and the sum of the elements inmid
is less than or equal to the sum of the elements inright
.
Given nums
, an array of non-negative integers, return the number of good ways to split nums
. As the number may be too large, return it modulo 109 + 7
.
Example 1:
Input: nums = [1,1,1] Output: 1 Explanation: The only good way to split nums is [1] [1] [1].
Example 2:
Input: nums = [1,2,2,2,5,0] Output: 3 Explanation: There are three good ways of splitting nums: [1] [2] [2,2,5,0] [1] [2,2] [2,5,0] [1,2] [2,2] [5,0]
Example 3:
Input: nums = [3,2,1] Output: 0 Explanation: There is no good way to split nums.
Constraints:
3 <= nums.length <= 105
0 <= nums[i] <= 104
Solutions
Solution 1: Prefix Sum + Binary Search
First, we preprocess the prefix sum array $s$ of the array $nums$, where $s[i]$ represents the sum of the first $i+1$ elements of the array $nums$.
Since all elements of the array $nums$ are non-negative integers, the prefix sum array $s$ is a monotonically increasing array.
We enumerate the index $i$ that the left
subarray can reach in the range $[0,..n-2)$, and then use the monotonically increasing characteristic of the prefix sum array to find the reasonable range of the mid
subarray split by binary search, denoted as $[j, k)$, and accumulate the number of schemes $k-j$.
In the binary search details, the subarray split must satisfy $s[j] \geq s[i]$ and $s[n - 1] - s[k] \geq s[k] - s[i]$. That is, $s[j] \geq s[i]$ and $s[k] \leq \frac{s[n - 1] + s[i]}{2}$.
Finally, return the number of schemes modulo $10^9+7$.
The time complexity is $O(n \times \log n)$, where $n$ is the length of the array $nums$.
-
class Solution { private static final int MOD = (int) 1e9 + 7; public int waysToSplit(int[] nums) { int n = nums.length; int[] s = new int[n]; s[0] = nums[0]; for (int i = 1; i < n; ++i) { s[i] = s[i - 1] + nums[i]; } int ans = 0; for (int i = 0; i < n - 2; ++i) { int j = search(s, s[i] << 1, i + 1, n - 1); int k = search(s, ((s[n - 1] + s[i]) >> 1) + 1, j, n - 1); ans = (ans + k - j) % MOD; } return ans; } private int search(int[] s, int x, int left, int right) { while (left < right) { int mid = (left + right) >> 1; if (s[mid] >= x) { right = mid; } else { left = mid + 1; } } return left; } }
-
class Solution { public: const int mod = 1e9 + 7; int waysToSplit(vector<int>& nums) { int n = nums.size(); vector<int> s(n, nums[0]); for (int i = 1; i < n; ++i) s[i] = s[i - 1] + nums[i]; int ans = 0; for (int i = 0; i < n - 2; ++i) { int j = lower_bound(s.begin() + i + 1, s.begin() + n - 1, s[i] << 1) - s.begin(); int k = upper_bound(s.begin() + j, s.begin() + n - 1, (s[n - 1] + s[i]) >> 1) - s.begin(); ans = (ans + k - j) % mod; } return ans; } };
-
class Solution: def waysToSplit(self, nums: List[int]) -> int: mod = 10**9 + 7 s = list(accumulate(nums)) ans, n = 0, len(nums) for i in range(n - 2): j = bisect_left(s, s[i] << 1, i + 1, n - 1) k = bisect_right(s, (s[-1] + s[i]) >> 1, j, n - 1) ans += k - j return ans % mod
-
func waysToSplit(nums []int) (ans int) { const mod int = 1e9 + 7 n := len(nums) s := make([]int, n) s[0] = nums[0] for i := 1; i < n; i++ { s[i] = s[i-1] + nums[i] } for i := 0; i < n-2; i++ { j := sort.Search(n-1, func(h int) bool { return h > i && s[h] >= (s[i]<<1) }) k := sort.Search(n-1, func(h int) bool { return h >= j && s[h] > (s[n-1]+s[i])>>1 }) ans = (ans + k - j) % mod } return }
-
/** * @param {number[]} nums * @return {number} */ var waysToSplit = function (nums) { const mod = 1e9 + 7; const n = nums.length; const s = new Array(n).fill(nums[0]); for (let i = 1; i < n; ++i) { s[i] = s[i - 1] + nums[i]; } function search(s, x, left, right) { while (left < right) { const mid = (left + right) >> 1; if (s[mid] >= x) { right = mid; } else { left = mid + 1; } } return left; } let ans = 0; for (let i = 0; i < n - 2; ++i) { const j = search(s, s[i] << 1, i + 1, n - 1); const k = search(s, ((s[n - 1] + s[i]) >> 1) + 1, j, n - 1); ans = (ans + k - j) % mod; } return ans; };