Welcome to Subscribe On Youtube
1710. Maximum Units on a Truck
Description
You are assigned to put some amount of boxes onto one truck. You are given a 2D array boxTypes
, where boxTypes[i] = [numberOfBoxesi, numberOfUnitsPerBoxi]
:
numberOfBoxesi
is the number of boxes of typei
.numberOfUnitsPerBoxi
is the number of units in each box of the typei
.
You are also given an integer truckSize
, which is the maximum number of boxes that can be put on the truck. You can choose any boxes to put on the truck as long as the number of boxes does not exceed truckSize
.
Return the maximum total number of units that can be put on the truck.
Example 1:
Input: boxTypes = [[1,3],[2,2],[3,1]], truckSize = 4 Output: 8 Explanation: There are: - 1 box of the first type that contains 3 units. - 2 boxes of the second type that contain 2 units each. - 3 boxes of the third type that contain 1 unit each. You can take all the boxes of the first and second types, and one box of the third type. The total number of units will be = (1 * 3) + (2 * 2) + (1 * 1) = 8.
Example 2:
Input: boxTypes = [[5,10],[2,5],[4,7],[3,9]], truckSize = 10 Output: 91
Constraints:
1 <= boxTypes.length <= 1000
1 <= numberOfBoxesi, numberOfUnitsPerBoxi <= 1000
1 <= truckSize <= 106
Solutions
Solution 1: Greedy + Sorting
According to the problem, we should choose as many units as possible. Therefore, we first sort boxTypes
in descending order of the number of units.
Then we traverse boxTypes
from front to back, choose up to truckSize
boxes, and accumulate the number of units.
The time complexity is $O(n \times \log n)$, where $n$ is the length of the two-dimensional array boxTypes
.
Solution 2: Counting Sort
We can also use the idea of counting sort, create an array $cnt$ of length $1001$, where $cnt[b]$ represents the number of boxes with $b$ units.
Then starting from the box with the maximum number of units, choose up to truckSize
boxes, and accumulate the number of units.
The time complexity is $O(M)$, where $M$ is the maximum number of units. In this problem, $M=1000$.
-
class Solution { public int maximumUnits(int[][] boxTypes, int truckSize) { Arrays.sort(boxTypes, (a, b) -> b[1] - a[1]); int ans = 0; for (var e : boxTypes) { int a = e[0], b = e[1]; ans += b * Math.min(truckSize, a); truckSize -= a; if (truckSize <= 0) { break; } } return ans; } }
-
class Solution { public: int maximumUnits(vector<vector<int>>& boxTypes, int truckSize) { sort(boxTypes.begin(), boxTypes.end(), [](auto& a, auto& b) { return a[1] > b[1]; }); int ans = 0; for (auto& e : boxTypes) { int a = e[0], b = e[1]; ans += b * min(truckSize, a); truckSize -= a; if (truckSize <= 0) break; } return ans; } };
-
class Solution: def maximumUnits(self, boxTypes: List[List[int]], truckSize: int) -> int: ans = 0 for a, b in sorted(boxTypes, key=lambda x: -x[1]): ans += b * min(truckSize, a) truckSize -= a if truckSize <= 0: break return ans
-
func maximumUnits(boxTypes [][]int, truckSize int) (ans int) { sort.Slice(boxTypes, func(i, j int) bool { return boxTypes[i][1] > boxTypes[j][1] }) for _, e := range boxTypes { a, b := e[0], e[1] ans += b * min(truckSize, a) truckSize -= a if truckSize <= 0 { break } } return }
-
function maximumUnits(boxTypes: number[][], truckSize: number): number { boxTypes.sort((a, b) => b[1] - a[1]); let sum = 0; let ans = 0; for (const [count, size] of boxTypes) { if (sum + count < truckSize) { ans += size * count; sum += count; } else { ans += (truckSize - sum) * size; break; } } return ans; }
-
impl Solution { pub fn maximum_units(mut box_types: Vec<Vec<i32>>, truck_size: i32) -> i32 { box_types.sort_by(|a, b| b[1].cmp(&a[1])); let mut sum = 0; let mut ans = 0; for box_type in box_types.iter() { if sum + box_type[0] < truck_size { sum += box_type[0]; ans += box_type[0] * box_type[1]; } else { ans += (truck_size - sum) * box_type[1]; break; } } ans } }