Welcome to Subscribe On Youtube
1689. Partitioning Into Minimum Number Of Deci-Binary Numbers
Description
A decimal number is called deci-binary if each of its digits is either 0 or 1 without any leading zeros. For example, 101 and 1100 are deci-binary, while 112 and 3001 are not.
Given a string n that represents a positive decimal integer, return the minimum number of positive deci-binary numbers needed so that they sum up to n.
Example 1:
Input: n = "32" Output: 3 Explanation: 10 + 11 + 11 = 32
Example 2:
Input: n = "82734" Output: 8
Example 3:
Input: n = "27346209830709182346" Output: 9
Constraints:
1 <= n.length <= 105nconsists of only digits.ndoes not contain any leading zeros and represents a positive integer.
Solutions
Solution 1: Quick Thinking
The problem is equivalent to finding the maximum number in the string.
The time complexity is $O(n)$, where $n$ is the length of the string. The space complexity is $O(1)$.
-
class Solution { public int minPartitions(String n) { int ans = 0; for (int i = 0; i < n.length(); ++i) { ans = Math.max(ans, n.charAt(i) - '0'); } return ans; } } -
class Solution { public: int minPartitions(string n) { int ans = 0; for (char& c : n) ans = max(ans, c - '0'); return ans; } }; -
class Solution: def minPartitions(self, n: str) -> int: return int(max(n)) -
func minPartitions(n string) (ans int) { for _, c := range n { if t := int(c - '0'); ans < t { ans = t } } return } -
function minPartitions(n: string): number { let nums = n.split('').map(d => parseInt(d)); let ans = Math.max(...nums); return ans; } -
impl Solution { pub fn min_partitions(n: String) -> i32 { let mut ans = 0; for c in n.as_bytes() { ans = ans.max((c - b'0') as i32); } ans } }