Welcome to Subscribe On Youtube

1671. Minimum Number of Removals to Make Mountain Array

Description

You may recall that an array arr is a mountain array if and only if:

  • arr.length >= 3
  • There exists some index i (0-indexed) with 0 < i < arr.length - 1 such that:
    • arr[0] < arr[1] < ... < arr[i - 1] < arr[i]
    • arr[i] > arr[i + 1] > ... > arr[arr.length - 1]

Given an integer array nums​​​, return the minimum number of elements to remove to make nums​​​ a mountain array.

 

Example 1:

Input: nums = [1,3,1]
Output: 0
Explanation: The array itself is a mountain array so we do not need to remove any elements.

Example 2:

Input: nums = [2,1,1,5,6,2,3,1]
Output: 3
Explanation: One solution is to remove the elements at indices 0, 1, and 5, making the array nums = [1,5,6,3,1].

 

Constraints:

  • 3 <= nums.length <= 1000
  • 1 <= nums[i] <= 109
  • It is guaranteed that you can make a mountain array out of nums.

Solutions

Solution 1: Dynamic Programming

This problem can be transformed into finding the longest increasing subsequence and the longest decreasing subsequence.

We define $left[i]$ as the length of the longest increasing subsequence ending with $nums[i]$, and define $right[i]$ as the length of the longest decreasing subsequence starting with $nums[i]$.

Then the final answer is $n - \max(left[i] + right[i] - 1)$, where $1 \leq i \leq n$, and $left[i] \gt 1$ and $right[i] \gt 1$.

The time complexity is $O(n^2)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.

  • class Solution {
        public int minimumMountainRemovals(int[] nums) {
            int n = nums.length;
            int[] left = new int[n];
            int[] right = new int[n];
            Arrays.fill(left, 1);
            Arrays.fill(right, 1);
            for (int i = 1; i < n; ++i) {
                for (int j = 0; j < i; ++j) {
                    if (nums[i] > nums[j]) {
                        left[i] = Math.max(left[i], left[j] + 1);
                    }
                }
            }
            for (int i = n - 2; i >= 0; --i) {
                for (int j = i + 1; j < n; ++j) {
                    if (nums[i] > nums[j]) {
                        right[i] = Math.max(right[i], right[j] + 1);
                    }
                }
            }
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                if (left[i] > 1 && right[i] > 1) {
                    ans = Math.max(ans, left[i] + right[i] - 1);
                }
            }
            return n - ans;
        }
    }
    
  • class Solution {
    public:
        int minimumMountainRemovals(vector<int>& nums) {
            int n = nums.size();
            vector<int> left(n, 1), right(n, 1);
            for (int i = 1; i < n; ++i) {
                for (int j = 0; j < i; ++j) {
                    if (nums[i] > nums[j]) {
                        left[i] = max(left[i], left[j] + 1);
                    }
                }
            }
            for (int i = n - 2; i >= 0; --i) {
                for (int j = i + 1; j < n; ++j) {
                    if (nums[i] > nums[j]) {
                        right[i] = max(right[i], right[j] + 1);
                    }
                }
            }
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                if (left[i] > 1 && right[i] > 1) {
                    ans = max(ans, left[i] + right[i] - 1);
                }
            }
            return n - ans;
        }
    };
    
  • class Solution:
        def minimumMountainRemovals(self, nums: List[int]) -> int:
            n = len(nums)
            left = [1] * n
            right = [1] * n
            for i in range(1, n):
                for j in range(i):
                    if nums[i] > nums[j]:
                        left[i] = max(left[i], left[j] + 1)
            for i in range(n - 2, -1, -1):
                for j in range(i + 1, n):
                    if nums[i] > nums[j]:
                        right[i] = max(right[i], right[j] + 1)
            return n - max(a + b - 1 for a, b in zip(left, right) if a > 1 and b > 1)
    
    
  • func minimumMountainRemovals(nums []int) int {
    	n := len(nums)
    	left, right := make([]int, n), make([]int, n)
    	for i := range left {
    		left[i], right[i] = 1, 1
    	}
    	for i := 1; i < n; i++ {
    		for j := 0; j < i; j++ {
    			if nums[i] > nums[j] {
    				left[i] = max(left[i], left[j]+1)
    			}
    		}
    	}
    	for i := n - 2; i >= 0; i-- {
    		for j := i + 1; j < n; j++ {
    			if nums[i] > nums[j] {
    				right[i] = max(right[i], right[j]+1)
    			}
    		}
    	}
    	ans := 0
    	for i := range left {
    		if left[i] > 1 && right[i] > 1 {
    			ans = max(ans, left[i]+right[i]-1)
    		}
    	}
    	return n - ans
    }
    
  • function minimumMountainRemovals(nums: number[]): number {
        const n = nums.length;
        const left = Array(n).fill(1);
        const right = Array(n).fill(1);
        for (let i = 1; i < n; ++i) {
            for (let j = 0; j < i; ++j) {
                if (nums[i] > nums[j]) {
                    left[i] = Math.max(left[i], left[j] + 1);
                }
            }
        }
        for (let i = n - 2; i >= 0; --i) {
            for (let j = i + 1; j < n; ++j) {
                if (nums[i] > nums[j]) {
                    right[i] = Math.max(right[i], right[j] + 1);
                }
            }
        }
        let ans = 0;
        for (let i = 0; i < n; ++i) {
            if (left[i] > 1 && right[i] > 1) {
                ans = Math.max(ans, left[i] + right[i] - 1);
            }
        }
        return n - ans;
    }
    
    
  • impl Solution {
        pub fn minimum_mountain_removals(nums: Vec<i32>) -> i32 {
            let n = nums.len();
            let mut left = vec![1; n];
            let mut right = vec![1; n];
            for i in 1..n {
                for j in 0..i {
                    if nums[i] > nums[j] {
                        left[i] = left[i].max(left[j] + 1);
                    }
                }
            }
            for i in (0..n - 1).rev() {
                for j in i + 1..n {
                    if nums[i] > nums[j] {
                        right[i] = right[i].max(right[j] + 1);
                    }
                }
            }
    
            let mut ans = 0;
            for i in 0..n {
                if left[i] > 1 && right[i] > 1 {
                    ans = ans.max(left[i] + right[i] - 1);
                }
            }
    
            (n as i32) - ans
        }
    }
    
    

All Problems

All Solutions