Welcome to Subscribe On Youtube

1655. Distribute Repeating Integers

Description

You are given an array of n integers, nums, where there are at most 50 unique values in the array. You are also given an array of m customer order quantities, quantity, where quantity[i] is the amount of integers the ith customer ordered. Determine if it is possible to distribute nums such that:

  • The ith customer gets exactly quantity[i] integers,
  • The integers the ith customer gets are all equal, and
  • Every customer is satisfied.

Return true if it is possible to distribute nums according to the above conditions.

 

Example 1:

Input: nums = [1,2,3,4], quantity = [2]
Output: false
Explanation: The 0th customer cannot be given two different integers.

Example 2:

Input: nums = [1,2,3,3], quantity = [2]
Output: true
Explanation: The 0th customer is given [3,3]. The integers [1,2] are not used.

Example 3:

Input: nums = [1,1,2,2], quantity = [2,2]
Output: true
Explanation: The 0th customer is given [1,1], and the 1st customer is given [2,2].

 

Constraints:

  • n == nums.length
  • 1 <= n <= 105
  • 1 <= nums[i] <= 1000
  • m == quantity.length
  • 1 <= m <= 10
  • 1 <= quantity[i] <= 105
  • There are at most 50 unique values in nums.

Solutions

  • class Solution {
        public boolean canDistribute(int[] nums, int[] quantity) {
            int m = quantity.length;
            int[] s = new int[1 << m];
            for (int i = 1; i < 1 << m; ++i) {
                for (int j = 0; j < m; ++j) {
                    if ((i >> j & 1) != 0) {
                        s[i] = s[i ^ (1 << j)] + quantity[j];
                        break;
                    }
                }
            }
            Map<Integer, Integer> cnt = new HashMap<>(50);
            for (int x : nums) {
                cnt.merge(x, 1, Integer::sum);
            }
            int n = cnt.size();
            int[] arr = new int[n];
            int i = 0;
            for (int x : cnt.values()) {
                arr[i++] = x;
            }
            boolean[][] f = new boolean[n][1 << m];
            for (i = 0; i < n; ++i) {
                f[i][0] = true;
            }
            for (i = 0; i < n; ++i) {
                for (int j = 1; j < 1 << m; ++j) {
                    if (i > 0 && f[i - 1][j]) {
                        f[i][j] = true;
                        continue;
                    }
                    for (int k = j; k > 0; k = (k - 1) & j) {
                        boolean ok1 = i == 0 ? j == k : f[i - 1][j ^ k];
                        boolean ok2 = s[k] <= arr[i];
                        if (ok1 && ok2) {
                            f[i][j] = true;
                            break;
                        }
                    }
                }
            }
            return f[n - 1][(1 << m) - 1];
        }
    }
    
  • class Solution {
    public:
        bool canDistribute(vector<int>& nums, vector<int>& quantity) {
            int m = quantity.size();
            int s[1 << m];
            memset(s, 0, sizeof(s));
            for (int i = 1; i < 1 << m; ++i) {
                for (int j = 0; j < m; ++j) {
                    if (i >> j & 1) {
                        s[i] = s[i ^ (1 << j)] + quantity[j];
                        break;
                    }
                }
            }
            unordered_map<int, int> cnt;
            for (int& x : nums) {
                ++cnt[x];
            }
            int n = cnt.size();
            vector<int> arr;
            for (auto& [_, x] : cnt) {
                arr.push_back(x);
            }
            bool f[n][1 << m];
            memset(f, 0, sizeof(f));
            for (int i = 0; i < n; ++i) {
                f[i][0] = true;
            }
            for (int i = 0; i < n; ++i) {
                for (int j = 1; j < 1 << m; ++j) {
                    if (i && f[i - 1][j]) {
                        f[i][j] = true;
                        continue;
                    }
                    for (int k = j; k; k = (k - 1) & j) {
                        bool ok1 = i == 0 ? j == k : f[i - 1][j ^ k];
                        bool ok2 = s[k] <= arr[i];
                        if (ok1 && ok2) {
                            f[i][j] = true;
                            break;
                        }
                    }
                }
            }
            return f[n - 1][(1 << m) - 1];
        }
    };
    
  • class Solution:
        def canDistribute(self, nums: List[int], quantity: List[int]) -> bool:
            m = len(quantity)
            s = [0] * (1 << m)
            for i in range(1, 1 << m):
                for j in range(m):
                    if i >> j & 1:
                        s[i] = s[i ^ (1 << j)] + quantity[j]
                        break
            cnt = Counter(nums)
            arr = list(cnt.values())
            n = len(arr)
            f = [[False] * (1 << m) for _ in range(n)]
            for i in range(n):
                f[i][0] = True
            for i, x in enumerate(arr):
                for j in range(1, 1 << m):
                    if i and f[i - 1][j]:
                        f[i][j] = True
                        continue
                    k = j
                    while k:
                        ok1 = j == k if i == 0 else f[i - 1][j ^ k]
                        ok2 = s[k] <= x
                        if ok1 and ok2:
                            f[i][j] = True
                            break
                        k = (k - 1) & j
            return f[-1][-1]
    
    
  • func canDistribute(nums []int, quantity []int) bool {
    	m := len(quantity)
    	s := make([]int, 1<<m)
    	for i := 1; i < 1<<m; i++ {
    		for j := 0; j < m; j++ {
    			if i>>j&1 == 1 {
    				s[i] = s[i^(1<<j)] + quantity[j]
    				break
    			}
    		}
    	}
    	cnt := map[int]int{}
    	for _, x := range nums {
    		cnt[x]++
    	}
    	n := len(cnt)
    	arr := make([]int, 0, n)
    	for _, x := range cnt {
    		arr = append(arr, x)
    	}
    	f := make([][]bool, n)
    	for i := range f {
    		f[i] = make([]bool, 1<<m)
    		f[i][0] = true
    	}
    	for i := 0; i < n; i++ {
    		for j := 0; j < 1<<m; j++ {
    			if i > 0 && f[i-1][j] {
    				f[i][j] = true
    				continue
    			}
    			for k := j; k > 0; k = (k - 1) & j {
    				ok1 := (i == 0 && j == k) || (i > 0 && f[i-1][j-k])
    				ok2 := s[k] <= arr[i]
    				if ok1 && ok2 {
    					f[i][j] = true
    					break
    				}
    			}
    		}
    	}
    	return f[n-1][(1<<m)-1]
    }
    
  • function canDistribute(nums: number[], quantity: number[]): boolean {
        const m = quantity.length;
        const s: number[] = new Array(1 << m).fill(0);
        for (let i = 1; i < 1 << m; ++i) {
            for (let j = 0; j < m; ++j) {
                if ((i >> j) & 1) {
                    s[i] = s[i ^ (1 << j)] + quantity[j];
                    break;
                }
            }
        }
        const cnt: Map<number, number> = new Map();
        for (const x of nums) {
            cnt.set(x, (cnt.get(x) || 0) + 1);
        }
        const n = cnt.size;
        const arr: number[] = [];
        for (const [_, v] of cnt) {
            arr.push(v);
        }
        const f: boolean[][] = new Array(n).fill(false).map(() => new Array(1 << m).fill(false));
        for (let i = 0; i < n; ++i) {
            f[i][0] = true;
        }
        for (let i = 0; i < n; ++i) {
            for (let j = 0; j < 1 << m; ++j) {
                if (i > 0 && f[i - 1][j]) {
                    f[i][j] = true;
                    continue;
                }
                for (let k = j; k > 0; k = (k - 1) & j) {
                    const ok1: boolean = (i == 0 && j == k) || (i > 0 && f[i - 1][j ^ k]);
                    const ok2: boolean = s[k] <= arr[i];
                    if (ok1 && ok2) {
                        f[i][j] = true;
                        break;
                    }
                }
            }
        }
        return f[n - 1][(1 << m) - 1];
    }
    
    

All Problems

All Solutions