Welcome to Subscribe On Youtube
1639. Number of Ways to Form a Target String Given a Dictionary
Description
You are given a list of strings of the same length words
and a string target
.
Your task is to form target
using the given words
under the following rules:
target
should be formed from left to right.- To form the
ith
character (0-indexed) oftarget
, you can choose thekth
character of thejth
string inwords
iftarget[i] = words[j][k]
. - Once you use the
kth
character of thejth
string ofwords
, you can no longer use thexth
character of any string inwords
wherex <= k
. In other words, all characters to the left of or at indexk
become unusuable for every string. - Repeat the process until you form the string
target
.
Notice that you can use multiple characters from the same string in words
provided the conditions above are met.
Return the number of ways to form target
from words
. Since the answer may be too large, return it modulo 109 + 7
.
Example 1:
Input: words = ["acca","bbbb","caca"], target = "aba" Output: 6 Explanation: There are 6 ways to form target. "aba" -> index 0 ("acca"), index 1 ("bbbb"), index 3 ("caca") "aba" -> index 0 ("acca"), index 2 ("bbbb"), index 3 ("caca") "aba" -> index 0 ("acca"), index 1 ("bbbb"), index 3 ("acca") "aba" -> index 0 ("acca"), index 2 ("bbbb"), index 3 ("acca") "aba" -> index 1 ("caca"), index 2 ("bbbb"), index 3 ("acca") "aba" -> index 1 ("caca"), index 2 ("bbbb"), index 3 ("caca")
Example 2:
Input: words = ["abba","baab"], target = "bab" Output: 4 Explanation: There are 4 ways to form target. "bab" -> index 0 ("baab"), index 1 ("baab"), index 2 ("abba") "bab" -> index 0 ("baab"), index 1 ("baab"), index 3 ("baab") "bab" -> index 0 ("baab"), index 2 ("baab"), index 3 ("baab") "bab" -> index 1 ("abba"), index 2 ("baab"), index 3 ("baab")
Constraints:
1 <= words.length <= 1000
1 <= words[i].length <= 1000
- All strings in
words
have the same length. 1 <= target.length <= 1000
words[i]
andtarget
contain only lowercase English letters.
Solutions
Solution 1: Preprocessing + Memory Search
We noticed that the length of each string in the string array $words$ is the same, so let’s remember $n$, then we can preprocess a two-dimensional array $cnt$, where $cnt[j][c]$ represents the string array $words$ The number of characters $c$ in the $j$-th position of.
Next, we design a function $dfs(i, j)$, which represents the number of schemes that construct $target[i,..]$ and the currently selected character position from $words$ is $j$. Then the answer is $dfs(0, 0)$.
The calculation logic of function $dfs(i, j)$ is as follows:
- If $i \geq m$, it means that all characters in $target$ have been selected, then the number of schemes is $1$.
- If $j \geq n$, it means that all characters in $words$ have been selected, then the number of schemes is $0$.
- Otherwise, we can choose not to select the character in the $j$-th position of $words$, then the number of schemes is $dfs(i, j + 1)$; or we choose the character in the $j$-th position of $words$, then the number of schemes is $dfs(i + 1, j + 1) \times cnt[j][target[i] - ‘a’]$.
Finally, we return $dfs(0, 0)$. Note that the answer is taken in modulo operation.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Where $m$ is the length of the string $target$, and $n$ is the length of each string in the string array $words$.
Solution 2: Preprocessing + Dynamic Programming
Similar to Solution 1, we can first preprocess a two-dimensional array $cnt$, where $cnt[j][c]$ represents the number of characters $c$ in the $j$-th position of the string array $words$.
Next, we define $f[i][j]$ which represents the number of ways to construct the first $i$ characters of $target$, and currently select characters from the first $j$ characters of each word in $words$. Then the answer is $f[m][n]$. Initially $f[0][j] = 1$, where $0 \leq j \leq n$.
Consider $f[i][j]$, where $i \gt 0$, $j \gt 0$. We can choose not to select the character in the $j$-th position of $words$, in which case the number of ways is $f[i][j - 1]$; or we choose the character in the $j$-th position of $words$, in which case the number of ways is $f[i - 1][j - 1] \times cnt[j - 1][target[i - 1] - ‘a’]$. Finally, we add the number of ways in these two cases, which is the value of $f[i][j]$.
Finally, we return $f[m][n]$. Note the mod operation of the answer.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Where $m$ is the length of the string $target$, and $n$ is the length of each string in the string array $words$.
-
class Solution { private int m; private int n; private String target; private Integer[][] f; private int[][] cnt; private final int mod = (int) 1e9 + 7; public int numWays(String[] words, String target) { m = target.length(); n = words[0].length(); f = new Integer[m][n]; this.target = target; cnt = new int[n][26]; for (var w : words) { for (int j = 0; j < n; ++j) { cnt[j][w.charAt(j) - 'a']++; } } return dfs(0, 0); } private int dfs(int i, int j) { if (i >= m) { return 1; } if (j >= n) { return 0; } if (f[i][j] != null) { return f[i][j]; } long ans = dfs(i, j + 1); ans += 1L * dfs(i + 1, j + 1) * cnt[j][target.charAt(i) - 'a']; ans %= mod; return f[i][j] = (int) ans; } }
-
class Solution { public: int numWays(vector<string>& words, string target) { const int mod = 1e9 + 7; int m = target.size(), n = words[0].size(); vector<vector<int>> cnt(n, vector<int>(26)); for (auto& w : words) { for (int j = 0; j < n; ++j) { ++cnt[j][w[j] - 'a']; } } int f[m][n]; memset(f, -1, sizeof(f)); function<int(int, int)> dfs = [&](int i, int j) -> int { if (i >= m) { return 1; } if (j >= n) { return 0; } if (f[i][j] != -1) { return f[i][j]; } int ans = dfs(i, j + 1); ans = (ans + 1LL * dfs(i + 1, j + 1) * cnt[j][target[i] - 'a']) % mod; return f[i][j] = ans; }; return dfs(0, 0); } };
-
class Solution: def numWays(self, words: List[str], target: str) -> int: @cache def dfs(i: int, j: int) -> int: if i >= m: return 1 if j >= n: return 0 ans = dfs(i + 1, j + 1) * cnt[j][ord(target[i]) - ord('a')] ans = (ans + dfs(i, j + 1)) % mod return ans m, n = len(target), len(words[0]) cnt = [[0] * 26 for _ in range(n)] for w in words: for j, c in enumerate(w): cnt[j][ord(c) - ord('a')] += 1 mod = 10**9 + 7 return dfs(0, 0)
-
func numWays(words []string, target string) int { m, n := len(target), len(words[0]) f := make([][]int, m) cnt := make([][26]int, n) for _, w := range words { for j, c := range w { cnt[j][c-'a']++ } } for i := range f { f[i] = make([]int, n) for j := range f[i] { f[i][j] = -1 } } const mod = 1e9 + 7 var dfs func(i, j int) int dfs = func(i, j int) int { if i >= m { return 1 } if j >= n { return 0 } if f[i][j] != -1 { return f[i][j] } ans := dfs(i, j+1) ans = (ans + dfs(i+1, j+1)*cnt[j][target[i]-'a']) % mod f[i][j] = ans return ans } return dfs(0, 0) }
-
function numWays(words: string[], target: string): number { const m = target.length; const n = words[0].length; const f = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0)); const mod = 1e9 + 7; for (let j = 0; j <= n; ++j) { f[0][j] = 1; } const cnt = new Array(n).fill(0).map(() => new Array(26).fill(0)); for (const w of words) { for (let j = 0; j < n; ++j) { ++cnt[j][w.charCodeAt(j) - 97]; } } for (let i = 1; i <= m; ++i) { for (let j = 1; j <= n; ++j) { f[i][j] = f[i][j - 1] + f[i - 1][j - 1] * cnt[j - 1][target.charCodeAt(i - 1) - 97]; f[i][j] %= mod; } } return f[m][n]; }