Welcome to Subscribe On Youtube
1605. Find Valid Matrix Given Row and Column Sums
Description
You are given two arrays rowSum
and colSum
of non-negative integers where rowSum[i]
is the sum of the elements in the ith
row and colSum[j]
is the sum of the elements of the jth
column of a 2D matrix. In other words, you do not know the elements of the matrix, but you do know the sums of each row and column.
Find any matrix of non-negative integers of size rowSum.length x colSum.length
that satisfies the rowSum
and colSum
requirements.
Return a 2D array representing any matrix that fulfills the requirements. It's guaranteed that at least one matrix that fulfills the requirements exists.
Example 1:
Input: rowSum = [3,8], colSum = [4,7] Output: [[3,0], [1,7]] Explanation: 0th row: 3 + 0 = 3 == rowSum[0] 1st row: 1 + 7 = 8 == rowSum[1] 0th column: 3 + 1 = 4 == colSum[0] 1st column: 0 + 7 = 7 == colSum[1] The row and column sums match, and all matrix elements are non-negative. Another possible matrix is: [[1,2], [3,5]]
Example 2:
Input: rowSum = [5,7,10], colSum = [8,6,8] Output: [[0,5,0], [6,1,0], [2,0,8]]
Constraints:
1 <= rowSum.length, colSum.length <= 500
0 <= rowSum[i], colSum[i] <= 108
sum(rowSum) == sum(colSum)
Solutions
-
class Solution { public int[][] restoreMatrix(int[] rowSum, int[] colSum) { int m = rowSum.length; int n = colSum.length; int[][] ans = new int[m][n]; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int x = Math.min(rowSum[i], colSum[j]); ans[i][j] = x; rowSum[i] -= x; colSum[j] -= x; } } return ans; } }
-
class Solution { public: vector<vector<int>> restoreMatrix(vector<int>& rowSum, vector<int>& colSum) { int m = rowSum.size(), n = colSum.size(); vector<vector<int>> ans(m, vector<int>(n)); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int x = min(rowSum[i], colSum[j]); ans[i][j] = x; rowSum[i] -= x; colSum[j] -= x; } } return ans; } };
-
class Solution: def restoreMatrix(self, rowSum: List[int], colSum: List[int]) -> List[List[int]]: m, n = len(rowSum), len(colSum) ans = [[0] * n for _ in range(m)] for i in range(m): for j in range(n): x = min(rowSum[i], colSum[j]) ans[i][j] = x rowSum[i] -= x colSum[j] -= x return ans
-
func restoreMatrix(rowSum []int, colSum []int) [][]int { m, n := len(rowSum), len(colSum) ans := make([][]int, m) for i := range ans { ans[i] = make([]int, n) } for i := range rowSum { for j := range colSum { x := min(rowSum[i], colSum[j]) ans[i][j] = x rowSum[i] -= x colSum[j] -= x } } return ans }
-
function restoreMatrix(rowSum: number[], colSum: number[]): number[][] { const m = rowSum.length; const n = colSum.length; const ans = Array.from(new Array(m), () => new Array(n).fill(0)); for (let i = 0; i < m; i++) { for (let j = 0; j < n; j++) { const x = Math.min(rowSum[i], colSum[j]); ans[i][j] = x; rowSum[i] -= x; colSum[j] -= x; } } return ans; }
-
/** * @param {number[]} rowSum * @param {number[]} colSum * @return {number[][]} */ var restoreMatrix = function (rowSum, colSum) { const m = rowSum.length; const n = colSum.length; const ans = Array.from(new Array(m), () => new Array(n).fill(0)); for (let i = 0; i < m; i++) { for (let j = 0; j < n; j++) { const x = Math.min(rowSum[i], colSum[j]); ans[i][j] = x; rowSum[i] -= x; colSum[j] -= x; } } return ans; };