Welcome to Subscribe On Youtube

1605. Find Valid Matrix Given Row and Column Sums

Description

You are given two arrays rowSum and colSum of non-negative integers where rowSum[i] is the sum of the elements in the ith row and colSum[j] is the sum of the elements of the jth column of a 2D matrix. In other words, you do not know the elements of the matrix, but you do know the sums of each row and column.

Find any matrix of non-negative integers of size rowSum.length x colSum.length that satisfies the rowSum and colSum requirements.

Return a 2D array representing any matrix that fulfills the requirements. It's guaranteed that at least one matrix that fulfills the requirements exists.

 

Example 1:

Input: rowSum = [3,8], colSum = [4,7]
Output: [[3,0],
         [1,7]]
Explanation: 
0th row: 3 + 0 = 3 == rowSum[0]
1st row: 1 + 7 = 8 == rowSum[1]
0th column: 3 + 1 = 4 == colSum[0]
1st column: 0 + 7 = 7 == colSum[1]
The row and column sums match, and all matrix elements are non-negative.
Another possible matrix is: [[1,2],
                             [3,5]]

Example 2:

Input: rowSum = [5,7,10], colSum = [8,6,8]
Output: [[0,5,0],
         [6,1,0],
         [2,0,8]]

 

Constraints:

  • 1 <= rowSum.length, colSum.length <= 500
  • 0 <= rowSum[i], colSum[i] <= 108
  • sum(rowSum) == sum(colSum)

Solutions

  • class Solution {
        public int[][] restoreMatrix(int[] rowSum, int[] colSum) {
            int m = rowSum.length;
            int n = colSum.length;
            int[][] ans = new int[m][n];
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    int x = Math.min(rowSum[i], colSum[j]);
                    ans[i][j] = x;
                    rowSum[i] -= x;
                    colSum[j] -= x;
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        vector<vector<int>> restoreMatrix(vector<int>& rowSum, vector<int>& colSum) {
            int m = rowSum.size(), n = colSum.size();
            vector<vector<int>> ans(m, vector<int>(n));
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    int x = min(rowSum[i], colSum[j]);
                    ans[i][j] = x;
                    rowSum[i] -= x;
                    colSum[j] -= x;
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def restoreMatrix(self, rowSum: List[int], colSum: List[int]) -> List[List[int]]:
            m, n = len(rowSum), len(colSum)
            ans = [[0] * n for _ in range(m)]
            for i in range(m):
                for j in range(n):
                    x = min(rowSum[i], colSum[j])
                    ans[i][j] = x
                    rowSum[i] -= x
                    colSum[j] -= x
            return ans
    
    
  • func restoreMatrix(rowSum []int, colSum []int) [][]int {
    	m, n := len(rowSum), len(colSum)
    	ans := make([][]int, m)
    	for i := range ans {
    		ans[i] = make([]int, n)
    	}
    	for i := range rowSum {
    		for j := range colSum {
    			x := min(rowSum[i], colSum[j])
    			ans[i][j] = x
    			rowSum[i] -= x
    			colSum[j] -= x
    		}
    	}
    	return ans
    }
    
  • function restoreMatrix(rowSum: number[], colSum: number[]): number[][] {
        const m = rowSum.length;
        const n = colSum.length;
        const ans = Array.from(new Array(m), () => new Array(n).fill(0));
        for (let i = 0; i < m; i++) {
            for (let j = 0; j < n; j++) {
                const x = Math.min(rowSum[i], colSum[j]);
                ans[i][j] = x;
                rowSum[i] -= x;
                colSum[j] -= x;
            }
        }
        return ans;
    }
    
    
  • /**
     * @param {number[]} rowSum
     * @param {number[]} colSum
     * @return {number[][]}
     */
    var restoreMatrix = function (rowSum, colSum) {
        const m = rowSum.length;
        const n = colSum.length;
        const ans = Array.from(new Array(m), () => new Array(n).fill(0));
        for (let i = 0; i < m; i++) {
            for (let j = 0; j < n; j++) {
                const x = Math.min(rowSum[i], colSum[j]);
                ans[i][j] = x;
                rowSum[i] -= x;
                colSum[j] -= x;
            }
        }
        return ans;
    };
    
    

All Problems

All Solutions