Welcome to Subscribe On Youtube

1594. Maximum Non Negative Product in a Matrix

Description

You are given a m x n matrix grid. Initially, you are located at the top-left corner (0, 0), and in each step, you can only move right or down in the matrix.

Among all possible paths starting from the top-left corner (0, 0) and ending in the bottom-right corner (m - 1, n - 1), find the path with the maximum non-negative product. The product of a path is the product of all integers in the grid cells visited along the path.

Return the maximum non-negative product modulo 109 + 7. If the maximum product is negative, return -1.

Notice that the modulo is performed after getting the maximum product.

 

Example 1:

Input: grid = [[-1,-2,-3],[-2,-3,-3],[-3,-3,-2]]
Output: -1
Explanation: It is not possible to get non-negative product in the path from (0, 0) to (2, 2), so return -1.

Example 2:

Input: grid = [[1,-2,1],[1,-2,1],[3,-4,1]]
Output: 8
Explanation: Maximum non-negative product is shown (1 * 1 * -2 * -4 * 1 = 8).

Example 3:

Input: grid = [[1,3],[0,-4]]
Output: 0
Explanation: Maximum non-negative product is shown (1 * 0 * -4 = 0).

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 15
  • -4 <= grid[i][j] <= 4

Solutions

  • class Solution {
        private static final int MOD = (int) 1e9 + 7;
    
        public int maxProductPath(int[][] grid) {
            int m = grid.length;
            int n = grid[0].length;
            long[][][] dp = new long[m][n][2];
            dp[0][0][0] = grid[0][0];
            dp[0][0][1] = grid[0][0];
            for (int i = 1; i < m; ++i) {
                dp[i][0][0] = dp[i - 1][0][0] * grid[i][0];
                dp[i][0][1] = dp[i - 1][0][1] * grid[i][0];
            }
            for (int j = 1; j < n; ++j) {
                dp[0][j][0] = dp[0][j - 1][0] * grid[0][j];
                dp[0][j][1] = dp[0][j - 1][1] * grid[0][j];
            }
            for (int i = 1; i < m; ++i) {
                for (int j = 1; j < n; ++j) {
                    int v = grid[i][j];
                    if (v >= 0) {
                        dp[i][j][0] = Math.min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
                        dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
                    } else {
                        dp[i][j][0] = Math.max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
                        dp[i][j][1] = Math.min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
                    }
                }
            }
            long ans = dp[m - 1][n - 1][1];
            return ans < 0 ? -1 : (int) (ans % MOD);
        }
    }
    
  • using ll = long long;
    const int mod = 1e9 + 7;
    
    class Solution {
    public:
        int maxProductPath(vector<vector<int>>& grid) {
            int m = grid.size();
            int n = grid[0].size();
            vector<vector<vector<ll>>> dp(m, vector<vector<ll>>(n, vector<ll>(2, grid[0][0])));
            for (int i = 1; i < m; ++i) {
                dp[i][0][0] = dp[i - 1][0][0] * grid[i][0];
                dp[i][0][1] = dp[i - 1][0][1] * grid[i][0];
            }
            for (int j = 1; j < n; ++j) {
                dp[0][j][0] = dp[0][j - 1][0] * grid[0][j];
                dp[0][j][1] = dp[0][j - 1][1] * grid[0][j];
            }
            for (int i = 1; i < m; ++i) {
                for (int j = 1; j < n; ++j) {
                    int v = grid[i][j];
                    if (v >= 0) {
                        dp[i][j][0] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
                        dp[i][j][1] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
                    } else {
                        dp[i][j][0] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v;
                        dp[i][j][1] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v;
                    }
                }
            }
            ll ans = dp[m - 1][n - 1][1];
            return ans < 0 ? -1 : (int) (ans % mod);
        }
    };
    
  • class Solution:
        def maxProductPath(self, grid: List[List[int]]) -> int:
            m, n = len(grid), len(grid[0])
            mod = 10**9 + 7
            dp = [[[grid[0][0]] * 2 for _ in range(n)] for _ in range(m)]
            for i in range(1, m):
                dp[i][0] = [dp[i - 1][0][0] * grid[i][0]] * 2
            for j in range(1, n):
                dp[0][j] = [dp[0][j - 1][0] * grid[0][j]] * 2
            for i in range(1, m):
                for j in range(1, n):
                    v = grid[i][j]
                    if v >= 0:
                        dp[i][j][0] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v
                        dp[i][j][1] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v
                    else:
                        dp[i][j][0] = max(dp[i - 1][j][1], dp[i][j - 1][1]) * v
                        dp[i][j][1] = min(dp[i - 1][j][0], dp[i][j - 1][0]) * v
            ans = dp[-1][-1][1]
            return -1 if ans < 0 else ans % mod
    
    
  • func maxProductPath(grid [][]int) int {
    	m, n := len(grid), len(grid[0])
    	dp := make([][][]int, m)
    	for i := range dp {
    		dp[i] = make([][]int, n)
    		for j := range dp[i] {
    			dp[i][j] = make([]int, 2)
    		}
    	}
    	dp[0][0] = []int{grid[0][0], grid[0][0]}
    	for i := 1; i < m; i++ {
    		dp[i][0][0] = dp[i-1][0][0] * grid[i][0]
    		dp[i][0][1] = dp[i-1][0][1] * grid[i][0]
    	}
    	for j := 1; j < n; j++ {
    		dp[0][j][0] = dp[0][j-1][0] * grid[0][j]
    		dp[0][j][1] = dp[0][j-1][1] * grid[0][j]
    	}
    	for i := 1; i < m; i++ {
    		for j := 1; j < n; j++ {
    			v := grid[i][j]
    			if v >= 0 {
    				dp[i][j][0] = min(dp[i-1][j][0], dp[i][j-1][0]) * v
    				dp[i][j][1] = max(dp[i-1][j][1], dp[i][j-1][1]) * v
    			} else {
    				dp[i][j][0] = max(dp[i-1][j][1], dp[i][j-1][1]) * v
    				dp[i][j][1] = min(dp[i-1][j][0], dp[i][j-1][0]) * v
    			}
    		}
    	}
    	ans := dp[m-1][n-1][1]
    	if ans < 0 {
    		return -1
    	}
    	var mod int = 1e9 + 7
    	return ans % mod
    }
    

All Problems

All Solutions