Welcome to Subscribe On Youtube
1583. Count Unhappy Friends
Description
You are given a list of preferences
for n
friends, where n
is always even.
For each person i
, preferences[i]
contains a list of friends sorted in the order of preference. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from 0
to n-1
.
All the friends are divided into pairs. The pairings are given in a list pairs
, where pairs[i] = [xi, yi]
denotes xi
is paired with yi
and yi
is paired with xi
.
However, this pairing may cause some of the friends to be unhappy. A friend x
is unhappy if x
is paired with y
and there exists a friend u
who is paired with v
but:
x
prefersu
overy
, andu
prefersx
overv
.
Return the number of unhappy friends.
Example 1:
Input: n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]] Output: 2 Explanation: Friend 1 is unhappy because: - 1 is paired with 0 but prefers 3 over 0, and - 3 prefers 1 over 2. Friend 3 is unhappy because: - 3 is paired with 2 but prefers 1 over 2, and - 1 prefers 3 over 0. Friends 0 and 2 are happy.
Example 2:
Input: n = 2, preferences = [[1], [0]], pairs = [[1, 0]] Output: 0 Explanation: Both friends 0 and 1 are happy.
Example 3:
Input: n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]] Output: 4
Constraints:
2 <= n <= 500
n
is even.preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i]
does not containi
.- All values in
preferences[i]
are unique. pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
- Each person is contained in exactly one pair.
Solutions
-
class Solution { public int unhappyFriends(int n, int[][] preferences, int[][] pairs) { int[][] d = new int[n][n]; for (int i = 0; i < n; ++i) { for (int j = 0; j < n - 1; ++j) { d[i][preferences[i][j]] = j; } } int[] p = new int[n]; for (var e : pairs) { int x = e[0], y = e[1]; p[x] = y; p[y] = x; } int ans = 0; for (int x = 0; x < n; ++x) { int y = p[x]; int find = 0; for (int i = 0; i < d[x][y]; ++i) { int u = preferences[x][i]; if (d[u][x] < d[u][p[u]]) { find = 1; break; } } ans += find; } return ans; } }
-
class Solution { public: int unhappyFriends(int n, vector<vector<int>>& preferences, vector<vector<int>>& pairs) { int d[n][n]; int p[n]; for (int i = 0; i < n; ++i) { for (int j = 0; j < n - 1; ++j) { d[i][preferences[i][j]] = j; } } for (auto& e : pairs) { int x = e[0], y = e[1]; p[x] = y; p[y] = x; } int ans = 0; for (int x = 0; x < n; ++x) { int y = p[x]; int find = 0; for (int i = 0; i < d[x][y]; ++i) { int u = preferences[x][i]; if (d[u][x] < d[u][p[u]]) { find = 1; break; } } ans += find; } return ans; } };
-
class Solution: def unhappyFriends( self, n: int, preferences: List[List[int]], pairs: List[List[int]] ) -> int: d = [{p: i for i, p in enumerate(v)} for v in preferences] p = {} for x, y in pairs: p[x] = y p[y] = x ans = 0 for x in range(n): y = p[x] ans += any(d[u][x] < d[u][p[u]] for u in preferences[x][: d[x][y]]) return ans
-
func unhappyFriends(n int, preferences [][]int, pairs [][]int) (ans int) { d := make([][]int, n) p := make([]int, n) for i := range d { d[i] = make([]int, n) for j := 0; j < n-1; j++ { d[i][preferences[i][j]] = j } } for _, e := range pairs { x, y := e[0], e[1] p[x] = y p[y] = x } for x := 0; x < n; x++ { y := p[x] find := 0 for i := 0; i < d[x][y]; i++ { u := preferences[x][i] if d[u][x] < d[u][p[u]] { find = 1 break } } ans += find } return }
-
function unhappyFriends(n: number, preferences: number[][], pairs: number[][]): number { const d: number[][] = Array.from({ length: n }, () => Array(n).fill(0)); for (let i = 0; i < n; ++i) { for (let j = 0; j < n - 1; ++j) { d[i][preferences[i][j]] = j; } } const p: number[] = Array(n).fill(0); for (const [x, y] of pairs) { p[x] = y; p[y] = x; } let ans = 0; for (let x = 0; x < n; ++x) { const y = p[x]; for (let i = 0; i < d[x][y]; ++i) { const u = preferences[x][i]; const v = p[u]; if (d[u][x] < d[u][v]) { ++ans; break; } } } return ans; }