Welcome to Subscribe On Youtube

1573. Number of Ways to Split a String

Description

Given a binary string s, you can split s into 3 non-empty strings s1, s2, and s3 where s1 + s2 + s3 = s.

Return the number of ways s can be split such that the number of ones is the same in s1, s2, and s3. Since the answer may be too large, return it modulo 109 + 7.

 

Example 1:

Input: s = "10101"
Output: 4
Explanation: There are four ways to split s in 3 parts where each part contain the same number of letters '1'.
"1|010|1"
"1|01|01"
"10|10|1"
"10|1|01"

Example 2:

Input: s = "1001"
Output: 0

Example 3:

Input: s = "0000"
Output: 3
Explanation: There are three ways to split s in 3 parts.
"0|0|00"
"0|00|0"
"00|0|0"

 

Constraints:

  • 3 <= s.length <= 105
  • s[i] is either '0' or '1'.

Solutions

  • class Solution {
        private String s;
    
        public int numWays(String s) {
            this.s = s;
            int cnt = 0;
            int n = s.length();
            for (int i = 0; i < n; ++i) {
                if (s.charAt(i) == '1') {
                    ++cnt;
                }
            }
            int m = cnt % 3;
            if (m != 0) {
                return 0;
            }
            final int mod = (int) 1e9 + 7;
            if (cnt == 0) {
                return (int) (((n - 1L) * (n - 2) / 2) % mod);
            }
            cnt /= 3;
            long i1 = find(cnt), i2 = find(cnt + 1);
            long j1 = find(cnt * 2), j2 = find(cnt * 2 + 1);
            return (int) ((i2 - i1) * (j2 - j1) % mod);
        }
    
        private int find(int x) {
            int t = 0;
            for (int i = 0;; ++i) {
                t += s.charAt(i) == '1' ? 1 : 0;
                if (t == x) {
                    return i;
                }
            }
        }
    }
    
  • class Solution {
    public:
        int numWays(string s) {
            int cnt = 0;
            for (char& c : s) {
                cnt += c == '1';
            }
            int m = cnt % 3;
            if (m) {
                return 0;
            }
            const int mod = 1e9 + 7;
            int n = s.size();
            if (cnt == 0) {
                return (n - 1LL) * (n - 2) / 2 % mod;
            }
            cnt /= 3;
            auto find = [&](int x) {
                int t = 0;
                for (int i = 0;; ++i) {
                    t += s[i] == '1';
                    if (t == x) {
                        return i;
                    }
                }
            };
            int i1 = find(cnt), i2 = find(cnt + 1);
            int j1 = find(cnt * 2), j2 = find(cnt * 2 + 1);
            return (1LL * (i2 - i1) * (j2 - j1)) % mod;
        }
    };
    
  • class Solution:
        def numWays(self, s: str) -> int:
            def find(x):
                t = 0
                for i, c in enumerate(s):
                    t += int(c == '1')
                    if t == x:
                        return i
    
            cnt, m = divmod(sum(c == '1' for c in s), 3)
            if m:
                return 0
            n = len(s)
            mod = 10**9 + 7
            if cnt == 0:
                return ((n - 1) * (n - 2) // 2) % mod
            i1, i2 = find(cnt), find(cnt + 1)
            j1, j2 = find(cnt * 2), find(cnt * 2 + 1)
            return (i2 - i1) * (j2 - j1) % (10**9 + 7)
    
    
  • func numWays(s string) int {
    	cnt := 0
    	for _, c := range s {
    		if c == '1' {
    			cnt++
    		}
    	}
    	m := cnt % 3
    	if m != 0 {
    		return 0
    	}
    	const mod = 1e9 + 7
    	n := len(s)
    	if cnt == 0 {
    		return (n - 1) * (n - 2) / 2 % mod
    	}
    	cnt /= 3
    	find := func(x int) int {
    		t := 0
    		for i := 0; ; i++ {
    			if s[i] == '1' {
    				t++
    				if t == x {
    					return i
    				}
    			}
    		}
    	}
    	i1, i2 := find(cnt), find(cnt+1)
    	j1, j2 := find(cnt*2), find(cnt*2+1)
    	return (i2 - i1) * (j2 - j1) % mod
    }
    

All Problems

All Solutions