Welcome to Subscribe On Youtube
1546. Maximum Number of Non-Overlapping Subarrays With Sum Equals Target
Description
Given an array nums
and an integer target
, return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 2 Output: 2 Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2).
Example 2:
Input: nums = [-1,3,5,1,4,2,-9], target = 6 Output: 2 Explanation: There are 3 subarrays with sum equal to 6. ([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping.
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
0 <= target <= 106
Solutions
Solution 1: Greedy + Prefix Sum + Hash Table
We traverse the array $nums$, using the method of prefix sum + hash table, to find subarrays with a sum of $target$. If found, we increment the answer by one, then we set the prefix sum to $0$ and continue to traverse the array $nums$ until the entire array is traversed.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.
-
class Solution { public int maxNonOverlapping(int[] nums, int target) { int ans = 0, n = nums.length; for (int i = 0; i < n; ++i) { Set<Integer> vis = new HashSet<>(); int s = 0; vis.add(0); while (i < n) { s += nums[i]; if (vis.contains(s - target)) { ++ans; break; } ++i; vis.add(s); } } return ans; } }
-
class Solution { public: int maxNonOverlapping(vector<int>& nums, int target) { int ans = 0, n = nums.size(); for (int i = 0; i < n; ++i) { unordered_set<int> vis{ {0} }; int s = 0; while (i < n) { s += nums[i]; if (vis.count(s - target)) { ++ans; break; } ++i; vis.insert(s); } } return ans; } };
-
class Solution: def maxNonOverlapping(self, nums: List[int], target: int) -> int: ans = 0 i, n = 0, len(nums) while i < n: s = 0 vis = {0} while i < n: s += nums[i] if s - target in vis: ans += 1 break i += 1 vis.add(s) i += 1 return ans
-
func maxNonOverlapping(nums []int, target int) (ans int) { n := len(nums) for i := 0; i < n; i++ { s := 0 vis := map[int]bool{0: true} for ; i < n; i++ { s += nums[i] if vis[s-target] { ans++ break } vis[s] = true } } return }
-
function maxNonOverlapping(nums: number[], target: number): number { const n = nums.length; let ans = 0; for (let i = 0; i < n; ++i) { let s = 0; const vis: Set<number> = new Set(); vis.add(0); for (; i < n; ++i) { s += nums[i]; if (vis.has(s - target)) { ++ans; break; } vis.add(s); } } return ans; }