Welcome to Subscribe On Youtube

1546. Maximum Number of Non-Overlapping Subarrays With Sum Equals Target

Description

Given an array nums and an integer target, return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.

 

Example 1:

Input: nums = [1,1,1,1,1], target = 2
Output: 2
Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2).

Example 2:

Input: nums = [-1,3,5,1,4,2,-9], target = 6
Output: 2
Explanation: There are 3 subarrays with sum equal to 6.
([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping.

 

Constraints:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104
  • 0 <= target <= 106

Solutions

Solution 1: Greedy + Prefix Sum + Hash Table

We traverse the array $nums$, using the method of prefix sum + hash table, to find subarrays with a sum of $target$. If found, we increment the answer by one, then we set the prefix sum to $0$ and continue to traverse the array $nums$ until the entire array is traversed.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.

  • class Solution {
        public int maxNonOverlapping(int[] nums, int target) {
            int ans = 0, n = nums.length;
            for (int i = 0; i < n; ++i) {
                Set<Integer> vis = new HashSet<>();
                int s = 0;
                vis.add(0);
                while (i < n) {
                    s += nums[i];
                    if (vis.contains(s - target)) {
                        ++ans;
                        break;
                    }
                    ++i;
                    vis.add(s);
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int maxNonOverlapping(vector<int>& nums, int target) {
            int ans = 0, n = nums.size();
            for (int i = 0; i < n; ++i) {
                unordered_set<int> vis{ {0} };
                int s = 0;
                while (i < n) {
                    s += nums[i];
                    if (vis.count(s - target)) {
                        ++ans;
                        break;
                    }
                    ++i;
                    vis.insert(s);
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def maxNonOverlapping(self, nums: List[int], target: int) -> int:
            ans = 0
            i, n = 0, len(nums)
            while i < n:
                s = 0
                vis = {0}
                while i < n:
                    s += nums[i]
                    if s - target in vis:
                        ans += 1
                        break
                    i += 1
                    vis.add(s)
                i += 1
            return ans
    
    
  • func maxNonOverlapping(nums []int, target int) (ans int) {
    	n := len(nums)
    	for i := 0; i < n; i++ {
    		s := 0
    		vis := map[int]bool{0: true}
    		for ; i < n; i++ {
    			s += nums[i]
    			if vis[s-target] {
    				ans++
    				break
    			}
    			vis[s] = true
    		}
    	}
    	return
    }
    
  • function maxNonOverlapping(nums: number[], target: number): number {
        const n = nums.length;
        let ans = 0;
        for (let i = 0; i < n; ++i) {
            let s = 0;
            const vis: Set<number> = new Set();
            vis.add(0);
            for (; i < n; ++i) {
                s += nums[i];
                if (vis.has(s - target)) {
                    ++ans;
                    break;
                }
                vis.add(s);
            }
        }
        return ans;
    }
    
    

All Problems

All Solutions