Welcome to Subscribe On Youtube
1530. Number of Good Leaf Nodes Pairs
Description
You are given the root
of a binary tree and an integer distance
. A pair of two different leaf nodes of a binary tree is said to be good if the length of the shortest path between them is less than or equal to distance
.
Return the number of good leaf node pairs in the tree.
Example 1:
Input: root = [1,2,3,null,4], distance = 3 Output: 1 Explanation: The leaf nodes of the tree are 3 and 4 and the length of the shortest path between them is 3. This is the only good pair.
Example 2:
Input: root = [1,2,3,4,5,6,7], distance = 3 Output: 2 Explanation: The good pairs are [4,5] and [6,7] with shortest path = 2. The pair [4,6] is not good because the length of ther shortest path between them is 4.
Example 3:
Input: root = [7,1,4,6,null,5,3,null,null,null,null,null,2], distance = 3 Output: 1 Explanation: The only good pair is [2,5].
Constraints:
- The number of nodes in the
tree
is in the range[1, 210].
1 <= Node.val <= 100
1 <= distance <= 10
Solutions
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public int countPairs(TreeNode root, int distance) { if (root == null) { return 0; } int ans = countPairs(root.left, distance) + countPairs(root.right, distance); int[] cnt1 = new int[distance]; int[] cnt2 = new int[distance]; dfs(root.left, cnt1, 1); dfs(root.right, cnt2, 1); for (int i = 0; i < distance; ++i) { for (int j = 0; j < distance; ++j) { if (i + j <= distance) { ans += cnt1[i] * cnt2[j]; } } } return ans; } void dfs(TreeNode root, int[] cnt, int i) { if (root == null || i >= cnt.length) { return; } if (root.left == null && root.right == null) { ++cnt[i]; return; } dfs(root.left, cnt, i + 1); dfs(root.right, cnt, i + 1); } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: int countPairs(TreeNode* root, int distance) { if (!root) return 0; int ans = countPairs(root->left, distance) + countPairs(root->right, distance); vector<int> cnt1(distance); vector<int> cnt2(distance); dfs(root->left, cnt1, 1); dfs(root->right, cnt2, 1); for (int i = 0; i < distance; ++i) { for (int j = 0; j < distance; ++j) { if (i + j <= distance) { ans += cnt1[i] * cnt2[j]; } } } return ans; } void dfs(TreeNode* root, vector<int>& cnt, int i) { if (!root || i >= cnt.size()) return; if (!root->left && !root->right) { ++cnt[i]; return; } dfs(root->left, cnt, i + 1); dfs(root->right, cnt, i + 1); } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def countPairs(self, root: TreeNode, distance: int) -> int: def dfs(root, cnt, i): if root is None or i >= distance: return if root.left is None and root.right is None: cnt[i] += 1 return dfs(root.left, cnt, i + 1) dfs(root.right, cnt, i + 1) if root is None: return 0 ans = self.countPairs(root.left, distance) + self.countPairs( root.right, distance ) cnt1 = Counter() cnt2 = Counter() dfs(root.left, cnt1, 1) dfs(root.right, cnt2, 1) for k1, v1 in cnt1.items(): for k2, v2 in cnt2.items(): if k1 + k2 <= distance: ans += v1 * v2 return ans
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func countPairs(root *TreeNode, distance int) int { if root == nil { return 0 } ans := countPairs(root.Left, distance) + countPairs(root.Right, distance) cnt1 := make([]int, distance) cnt2 := make([]int, distance) dfs(root.Left, cnt1, 1) dfs(root.Right, cnt2, 1) for i, v1 := range cnt1 { for j, v2 := range cnt2 { if i+j <= distance { ans += v1 * v2 } } } return ans } func dfs(root *TreeNode, cnt []int, i int) { if root == nil || i >= len(cnt) { return } if root.Left == nil && root.Right == nil { cnt[i]++ return } dfs(root.Left, cnt, i+1) dfs(root.Right, cnt, i+1) }
-
function countPairs(root: TreeNode | null, distance: number): number { const pairs: number[][] = []; const dfs = (node: TreeNode | null): number[][] => { if (!node) return []; if (!node.left && !node.right) return [[node.val, 1]]; const left = dfs(node.left); const right = dfs(node.right); for (const [x, dx] of left) { for (const [y, dy] of right) { if (dx + dy <= distance) { pairs.push([x, y]); } } } const res: number[][] = []; for (const arr of [left, right]) { for (const x of arr) { if (++x[1] <= distance) res.push(x); } } return res; }; dfs(root); return pairs.length; }
-
/** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @param {number} distance * @return {number} */ var countPairs = function (root, distance) { const pairs = []; const dfs = node => { if (!node) return []; if (!node.left && !node.right) return [[node.val, 1]]; const left = dfs(node.left); const right = dfs(node.right); for (const [x, dx] of left) { for (const [y, dy] of right) { if (dx + dy <= distance) { pairs.push([x, y]); } } } const res = []; for (const arr of [left, right]) { for (const x of arr) { if (++x[1] <= distance) res.push(x); } } return res; }; dfs(root); return pairs.length; };