Welcome to Subscribe On Youtube

1510. Stone Game IV

Description

Alice and Bob take turns playing a game, with Alice starting first.

Initially, there are n stones in a pile. On each player's turn, that player makes a move consisting of removing any non-zero square number of stones in the pile.

Also, if a player cannot make a move, he/she loses the game.

Given a positive integer n, return true if and only if Alice wins the game otherwise return false, assuming both players play optimally.

 

Example 1:

Input: n = 1
Output: true
Explanation: Alice can remove 1 stone winning the game because Bob doesn't have any moves.

Example 2:

Input: n = 2
Output: false
Explanation: Alice can only remove 1 stone, after that Bob removes the last one winning the game (2 -> 1 -> 0).

Example 3:

Input: n = 4
Output: true
Explanation: n is already a perfect square, Alice can win with one move, removing 4 stones (4 -> 0).

 

Constraints:

  • 1 <= n <= 105

Solutions

  • class Solution {
        private Boolean[] f;
    
        public boolean winnerSquareGame(int n) {
            f = new Boolean[n + 1];
            return dfs(n);
        }
    
        private boolean dfs(int i) {
            if (i <= 0) {
                return false;
            }
            if (f[i] != null) {
                return f[i];
            }
            for (int j = 1; j <= i / j; ++j) {
                if (!dfs(i - j * j)) {
                    return f[i] = true;
                }
            }
            return f[i] = false;
        }
    }
    
  • class Solution {
    public:
        bool winnerSquareGame(int n) {
            int f[n + 1];
            memset(f, 0, sizeof(f));
            function<bool(int)> dfs = [&](int i) -> bool {
                if (i <= 0) {
                    return false;
                }
                if (f[i] != 0) {
                    return f[i] == 1;
                }
                for (int j = 1; j <= i / j; ++j) {
                    if (!dfs(i - j * j)) {
                        f[i] = 1;
                        return true;
                    }
                }
                f[i] = -1;
                return false;
            };
            return dfs(n);
        }
    };
    
  • class Solution:
        def winnerSquareGame(self, n: int) -> bool:
            @cache
            def dfs(i: int) -> bool:
                if i == 0:
                    return False
                j = 1
                while j * j <= i:
                    if not dfs(i - j * j):
                        return True
                    j += 1
                return False
    
            return dfs(n)
    
    
  • func winnerSquareGame(n int) bool {
    	f := make([]int, n+1)
    	var dfs func(int) bool
    	dfs = func(i int) bool {
    		if i <= 0 {
    			return false
    		}
    		if f[i] != 0 {
    			return f[i] == 1
    		}
    		for j := 1; j <= i/j; j++ {
    			if !dfs(i - j*j) {
    				f[i] = 1
    				return true
    			}
    		}
    		f[i] = -1
    		return false
    	}
    	return dfs(n)
    }
    
  • function winnerSquareGame(n: number): boolean {
        const f: number[] = new Array(n + 1).fill(0);
        const dfs = (i: number): boolean => {
            if (i <= 0) {
                return false;
            }
            if (f[i] !== 0) {
                return f[i] === 1;
            }
            for (let j = 1; j * j <= i; ++j) {
                if (!dfs(i - j * j)) {
                    f[i] = 1;
                    return true;
                }
            }
            f[i] = -1;
            return false;
        };
        return dfs(n);
    }
    
    

All Problems

All Solutions