Welcome to Subscribe On Youtube

1489. Find Critical and Pseudo-Critical Edges in Minimum Spanning Tree

Description

Given a weighted undirected connected graph with n vertices numbered from 0 to n - 1, and an array edges where edges[i] = [ai, bi, weighti] represents a bidirectional and weighted edge between nodes ai and bi. A minimum spanning tree (MST) is a subset of the graph's edges that connects all vertices without cycles and with the minimum possible total edge weight.

Find all the critical and pseudo-critical edges in the given graph's minimum spanning tree (MST). An MST edge whose deletion from the graph would cause the MST weight to increase is called a critical edge. On the other hand, a pseudo-critical edge is that which can appear in some MSTs but not all.

Note that you can return the indices of the edges in any order.

 

Example 1:

Input: n = 5, edges = [[0,1,1],[1,2,1],[2,3,2],[0,3,2],[0,4,3],[3,4,3],[1,4,6]]
Output: [[0,1],[2,3,4,5]]
Explanation: The figure above describes the graph.
The following figure shows all the possible MSTs:

Notice that the two edges 0 and 1 appear in all MSTs, therefore they are critical edges, so we return them in the first list of the output.
The edges 2, 3, 4, and 5 are only part of some MSTs, therefore they are considered pseudo-critical edges. We add them to the second list of the output.

Example 2:

Input: n = 4, edges = [[0,1,1],[1,2,1],[2,3,1],[0,3,1]]
Output: [[],[0,1,2,3]]
Explanation: We can observe that since all 4 edges have equal weight, choosing any 3 edges from the given 4 will yield an MST. Therefore all 4 edges are pseudo-critical.

 

Constraints:

  • 2 <= n <= 100
  • 1 <= edges.length <= min(200, n * (n - 1) / 2)
  • edges[i].length == 3
  • 0 <= ai < bi < n
  • 1 <= weighti <= 1000
  • All pairs (ai, bi) are distinct.

Solutions

  • class Solution {
        public List<List<Integer>> findCriticalAndPseudoCriticalEdges(int n, int[][] edges) {
            for (int i = 0; i < edges.length; ++i) {
                int[] e = edges[i];
                int[] t = new int[4];
                System.arraycopy(e, 0, t, 0, 3);
                t[3] = i;
                edges[i] = t;
            }
            Arrays.sort(edges, Comparator.comparingInt(a -> a[2]));
            int v = 0;
            UnionFind uf = new UnionFind(n);
            for (int[] e : edges) {
                int f = e[0], t = e[1], w = e[2];
                if (uf.union(f, t)) {
                    v += w;
                }
            }
            List<List<Integer>> ans = new ArrayList<>();
            for (int i = 0; i < 2; ++i) {
                ans.add(new ArrayList<>());
            }
            for (int[] e : edges) {
                int f = e[0], t = e[1], w = e[2], i = e[3];
                uf = new UnionFind(n);
                int k = 0;
                for (int[] ne : edges) {
                    int x = ne[0], y = ne[1], z = ne[2], j = ne[3];
                    if (j != i && uf.union(x, y)) {
                        k += z;
                    }
                }
                if (uf.getN() > 1 || (uf.getN() == 1 && k > v)) {
                    ans.get(0).add(i);
                    continue;
                }
                uf = new UnionFind(n);
                uf.union(f, t);
                k = w;
                for (int[] ne : edges) {
                    int x = ne[0], y = ne[1], z = ne[2], j = ne[3];
                    if (j != i && uf.union(x, y)) {
                        k += z;
                    }
                }
                if (k == v) {
                    ans.get(1).add(i);
                }
            }
            return ans;
        }
    }
    
    class UnionFind {
        private int[] p;
        private int n;
    
        public UnionFind(int n) {
            p = new int[n];
            this.n = n;
            for (int i = 0; i < n; ++i) {
                p[i] = i;
            }
        }
    
        public int getN() {
            return n;
        }
    
        public boolean union(int a, int b) {
            if (find(a) == find(b)) {
                return false;
            }
            p[find(a)] = find(b);
            --n;
            return true;
        }
    
        public int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    }
    
  • class UnionFind {
    public:
        vector<int> p;
        int n;
    
        UnionFind(int _n)
            : n(_n)
            , p(_n) {
            iota(p.begin(), p.end(), 0);
        }
    
        bool unite(int a, int b) {
            if (find(a) == find(b)) return false;
            p[find(a)] = find(b);
            --n;
            return true;
        }
    
        int find(int x) {
            if (p[x] != x) p[x] = find(p[x]);
            return p[x];
        }
    };
    
    class Solution {
    public:
        vector<vector<int>> findCriticalAndPseudoCriticalEdges(int n, vector<vector<int>>& edges) {
            for (int i = 0; i < edges.size(); ++i) edges[i].push_back(i);
            sort(edges.begin(), edges.end(), [](auto& a, auto& b) { return a[2] < b[2]; });
            int v = 0;
            UnionFind uf(n);
            for (auto& e : edges) {
                int f = e[0], t = e[1], w = e[2];
                if (uf.unite(f, t)) v += w;
            }
            vector<vector<int>> ans(2);
            for (auto& e : edges) {
                int f = e[0], t = e[1], w = e[2], i = e[3];
                UnionFind ufa(n);
                int k = 0;
                for (auto& ne : edges) {
                    int x = ne[0], y = ne[1], z = ne[2], j = ne[3];
                    if (j != i && ufa.unite(x, y)) k += z;
                }
                if (ufa.n > 1 || (ufa.n == 1 && k > v)) {
                    ans[0].push_back(i);
                    continue;
                }
    
                UnionFind ufb(n);
                ufb.unite(f, t);
                k = w;
                for (auto& ne : edges) {
                    int x = ne[0], y = ne[1], z = ne[2], j = ne[3];
                    if (j != i && ufb.unite(x, y)) k += z;
                }
                if (k == v) ans[1].push_back(i);
            }
            return ans;
        }
    };
    
  • class UnionFind:
        def __init__(self, n):
            self.p = list(range(n))
            self.n = n
    
        def union(self, a, b):
            if self.find(a) == self.find(b):
                return False
            self.p[self.find(a)] = self.find(b)
            self.n -= 1
            return True
    
        def find(self, x):
            if self.p[x] != x:
                self.p[x] = self.find(self.p[x])
            return self.p[x]
    
    
    class Solution:
        def findCriticalAndPseudoCriticalEdges(
            self, n: int, edges: List[List[int]]
        ) -> List[List[int]]:
            for i, e in enumerate(edges):
                e.append(i)
            edges.sort(key=lambda x: x[2])
            uf = UnionFind(n)
            v = sum(w for f, t, w, _ in edges if uf.union(f, t))
            ans = [[], []]
            for f, t, w, i in edges:
                uf = UnionFind(n)
                k = sum(z for x, y, z, j in edges if j != i and uf.union(x, y))
                if uf.n > 1 or (uf.n == 1 and k > v):
                    ans[0].append(i)
                    continue
    
                uf = UnionFind(n)
                uf.union(f, t)
                k = w + sum(z for x, y, z, j in edges if j != i and uf.union(x, y))
                if k == v:
                    ans[1].append(i)
            return ans
    
    
  • type unionFind struct {
    	p []int
    	n int
    }
    
    func newUnionFind(n int) *unionFind {
    	p := make([]int, n)
    	for i := range p {
    		p[i] = i
    	}
    	return &unionFind{p, n}
    }
    
    func (uf *unionFind) find(x int) int {
    	if uf.p[x] != x {
    		uf.p[x] = uf.find(uf.p[x])
    	}
    	return uf.p[x]
    }
    
    func (uf *unionFind) union(a, b int) bool {
    	if uf.find(a) == uf.find(b) {
    		return false
    	}
    	uf.p[uf.find(a)] = uf.find(b)
    	uf.n--
    	return true
    }
    
    func findCriticalAndPseudoCriticalEdges(n int, edges [][]int) [][]int {
    	for i := range edges {
    		edges[i] = append(edges[i], i)
    	}
    	sort.Slice(edges, func(i, j int) bool {
    		return edges[i][2] < edges[j][2]
    	})
    	v := 0
    	uf := newUnionFind(n)
    	for _, e := range edges {
    		f, t, w := e[0], e[1], e[2]
    		if uf.union(f, t) {
    			v += w
    		}
    	}
    	ans := make([][]int, 2)
    	for _, e := range edges {
    		f, t, w, i := e[0], e[1], e[2], e[3]
    		uf = newUnionFind(n)
    		k := 0
    		for _, ne := range edges {
    			x, y, z, j := ne[0], ne[1], ne[2], ne[3]
    			if j != i && uf.union(x, y) {
    				k += z
    			}
    		}
    		if uf.n > 1 || (uf.n == 1 && k > v) {
    			ans[0] = append(ans[0], i)
    			continue
    		}
    		uf = newUnionFind(n)
    		uf.union(f, t)
    		k = w
    		for _, ne := range edges {
    			x, y, z, j := ne[0], ne[1], ne[2], ne[3]
    			if j != i && uf.union(x, y) {
    				k += z
    			}
    		}
    		if k == v {
    			ans[1] = append(ans[1], i)
    		}
    	}
    	return ans
    }
    

All Problems

All Solutions