Welcome to Subscribe On Youtube
1483. Kth Ancestor of a Tree Node
Description
You are given a tree with n
nodes numbered from 0
to n - 1
in the form of a parent array parent
where parent[i]
is the parent of ith
node. The root of the tree is node 0
. Find the kth
ancestor of a given node.
The kth
ancestor of a tree node is the kth
node in the path from that node to the root node.
Implement the TreeAncestor
class:
TreeAncestor(int n, int[] parent)
Initializes the object with the number of nodes in the tree and the parent array.int getKthAncestor(int node, int k)
return thekth
ancestor of the given nodenode
. If there is no such ancestor, return-1
.
Example 1:
Input ["TreeAncestor", "getKthAncestor", "getKthAncestor", "getKthAncestor"] [[7, [-1, 0, 0, 1, 1, 2, 2]], [3, 1], [5, 2], [6, 3]] Output [null, 1, 0, -1] Explanation TreeAncestor treeAncestor = new TreeAncestor(7, [-1, 0, 0, 1, 1, 2, 2]); treeAncestor.getKthAncestor(3, 1); // returns 1 which is the parent of 3 treeAncestor.getKthAncestor(5, 2); // returns 0 which is the grandparent of 5 treeAncestor.getKthAncestor(6, 3); // returns -1 because there is no such ancestor
Constraints:
1 <= k <= n <= 5 * 104
parent.length == n
parent[0] == -1
0 <= parent[i] < n
for all0 < i < n
0 <= node < n
- There will be at most
5 * 104
queries.
Solutions
Solution 1: Dynamic Programming + Binary Lifting
The problem asks us to find the $k$-th ancestor node of a node $node$. If we solve it by brute force, we need to traverse upwards from $node$ for $k$ times, which has a time complexity of $O(k)$ and will obviously exceed the time limit.
We can use dynamic programming combined with the idea of binary lifting to handle this.
We define $p[i][j]$ as the $2^j$-th ancestor node of node $i$, i.e., the node reached by moving $2^j$ steps upwards from node $i$. Then we can get the state transition equation:
\[p[i][j] = p[p[i][j-1]][j-1]\]That is, to find the $2^j$-th ancestor node of node $i$, we can first find the $2^{j-1}$-th ancestor node of node $i$, and then find the $2^{j-1}$-th ancestor node of this node. Therefore, we need to find the ancestor node of each node at a distance of $2^j$, until we reach the maximum height of the tree.
For each query later, we can decompose $k$ into its binary representation, and then according to the positions of $1$ in the binary, we accumulate the queries upwards, and finally get the $k$-th ancestor node of node $node$.
In terms of time complexity, the initialization is $O(n \times \log n)$, and the query is $O(\log n)$. The space complexity is $O(n \times \log n)$, where $n$ is the number of nodes in the tree.
-
class TreeAncestor { private int[][] p; public TreeAncestor(int n, int[] parent) { p = new int[n][18]; for (var e : p) { Arrays.fill(e, -1); } for (int i = 0; i < n; ++i) { p[i][0] = parent[i]; } for (int j = 1; j < 18; ++j) { for (int i = 0; i < n; ++i) { if (p[i][j - 1] == -1) { continue; } p[i][j] = p[p[i][j - 1]][j - 1]; } } } public int getKthAncestor(int node, int k) { for (int i = 17; i >= 0; --i) { if (((k >> i) & 1) == 1) { node = p[node][i]; if (node == -1) { break; } } } return node; } } /** * Your TreeAncestor object will be instantiated and called as such: * TreeAncestor obj = new TreeAncestor(n, parent); * int param_1 = obj.getKthAncestor(node,k); */
-
class TreeAncestor { public: TreeAncestor(int n, vector<int>& parent) { p = vector<vector<int>>(n, vector<int>(18, -1)); for (int i = 0; i < n; ++i) { p[i][0] = parent[i]; } for (int j = 1; j < 18; ++j) { for (int i = 0; i < n; ++i) { if (p[i][j - 1] == -1) { continue; } p[i][j] = p[p[i][j - 1]][j - 1]; } } } int getKthAncestor(int node, int k) { for (int i = 17; ~i; --i) { if (k >> i & 1) { node = p[node][i]; if (node == -1) { break; } } } return node; } private: vector<vector<int>> p; }; /** * Your TreeAncestor object will be instantiated and called as such: * TreeAncestor* obj = new TreeAncestor(n, parent); * int param_1 = obj->getKthAncestor(node,k); */
-
class TreeAncestor: def __init__(self, n: int, parent: List[int]): self.p = [[-1] * 18 for _ in range(n)] for i, fa in enumerate(parent): self.p[i][0] = fa for j in range(1, 18): for i in range(n): if self.p[i][j - 1] == -1: continue self.p[i][j] = self.p[self.p[i][j - 1]][j - 1] def getKthAncestor(self, node: int, k: int) -> int: for i in range(17, -1, -1): if k >> i & 1: node = self.p[node][i] if node == -1: break return node # Your TreeAncestor object will be instantiated and called as such: # obj = TreeAncestor(n, parent) # param_1 = obj.getKthAncestor(node,k)
-
type TreeAncestor struct { p [][18]int } func Constructor(n int, parent []int) TreeAncestor { p := make([][18]int, n) for i, fa := range parent { p[i][0] = fa for j := 1; j < 18; j++ { p[i][j] = -1 } } for j := 1; j < 18; j++ { for i := range p { if p[i][j-1] == -1 { continue } p[i][j] = p[p[i][j-1]][j-1] } } return TreeAncestor{p} } func (this *TreeAncestor) GetKthAncestor(node int, k int) int { for i := 17; i >= 0; i-- { if k>>i&1 == 1 { node = this.p[node][i] if node == -1 { break } } } return node } /** * Your TreeAncestor object will be instantiated and called as such: * obj := Constructor(n, parent); * param_1 := obj.GetKthAncestor(node,k); */
-
class TreeAncestor { private p: number[][]; constructor(n: number, parent: number[]) { const p = new Array(n).fill(0).map(() => new Array(18).fill(-1)); for (let i = 0; i < n; ++i) { p[i][0] = parent[i]; } for (let j = 1; j < 18; ++j) { for (let i = 0; i < n; ++i) { if (p[i][j - 1] === -1) { continue; } p[i][j] = p[p[i][j - 1]][j - 1]; } } this.p = p; } getKthAncestor(node: number, k: number): number { for (let i = 17; i >= 0; --i) { if (((k >> i) & 1) === 1) { node = this.p[node][i]; if (node === -1) { break; } } } return node; } } /** * Your TreeAncestor object will be instantiated and called as such: * var obj = new TreeAncestor(n, parent) * var param_1 = obj.getKthAncestor(node,k) */
-
public class TreeAncestor { private int[][] p; public TreeAncestor(int n, int[] parent) { p = new int[n][]; for (int i = 0; i < n; i++) { p[i] = new int[18]; for (int j = 0; j < 18; j++) { p[i][j] = -1; } } for (int i = 0; i < n; ++i) { p[i][0] = parent[i]; } for (int j = 1; j < 18; ++j) { for (int i = 0; i < n; ++i) { if (p[i][j - 1] == -1) { continue; } p[i][j] = p[p[i][j - 1]][j - 1]; } } } public int GetKthAncestor(int node, int k) { for (int i = 17; i >= 0; --i) { if (((k >> i) & 1) == 1) { node = p[node][i]; if (node == -1) { break; } } } return node; } } /** * Your TreeAncestor object will be instantiated and called as such: * TreeAncestor obj = new TreeAncestor(n, parent); * int param_1 = obj.GetKthAncestor(node,k); */