Welcome to Subscribe On Youtube
1480. Running Sum of 1d Array
Description
Given an array nums
. We define a running sum of an array as runningSum[i] = sum(nums[0]…nums[i])
.
Return the running sum of nums
.
Example 1:
Input: nums = [1,2,3,4] Output: [1,3,6,10] Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4].
Example 2:
Input: nums = [1,1,1,1,1] Output: [1,2,3,4,5] Explanation: Running sum is obtained as follows: [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1].
Example 3:
Input: nums = [3,1,2,10,1] Output: [3,4,6,16,17]
Constraints:
1 <= nums.length <= 1000
-10^6 <= nums[i] <= 10^6
Solutions
Solution 1: Prefix Sum
We directly traverse the array. For the current element $nums[i]$, we add it with the prefix sum $nums[i-1]$ to get the prefix sum $nums[i]$ of the current element.
The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.
-
class Solution { public int[] runningSum(int[] nums) { for (int i = 1; i < nums.length; ++i) { nums[i] += nums[i - 1]; } return nums; } }
-
class Solution { public: vector<int> runningSum(vector<int>& nums) { for (int i = 1; i < nums.size(); ++i) nums[i] += nums[i - 1]; return nums; } };
-
class Solution: def runningSum(self, nums: List[int]) -> List[int]: return list(accumulate(nums))
-
func runningSum(nums []int) []int { for i := 1; i < len(nums); i++ { nums[i] += nums[i-1] } return nums }
-
function runningSum(nums: number[]): number[] { for (let i = 1; i < nums.length; ++i) { nums[i] += nums[i - 1]; } return nums; }
-
class Solution { /** * @param Integer[] $nums * @return Integer[] */ function runningSum($nums) { for ($i = 1; $i < count($nums); $i++) { $nums[$i] += $nums[$i - 1]; } return $nums; } }
-
public class Solution { public int[] RunningSum(int[] nums) { for (int i = 1; i < nums.Length; ++i) { nums[i] += nums[i - 1]; } return nums; } }