Welcome to Subscribe On Youtube

1478. Allocate Mailboxes

Description

Given the array houses where houses[i] is the location of the ith house along a street and an integer k, allocate k mailboxes in the street.

Return the minimum total distance between each house and its nearest mailbox.

The test cases are generated so that the answer fits in a 32-bit integer.

 

Example 1:

Input: houses = [1,4,8,10,20], k = 3
Output: 5
Explanation: Allocate mailboxes in position 3, 9 and 20.
Minimum total distance from each houses to nearest mailboxes is |3-1| + |4-3| + |9-8| + |10-9| + |20-20| = 5 

Example 2:

Input: houses = [2,3,5,12,18], k = 2
Output: 9
Explanation: Allocate mailboxes in position 3 and 14.
Minimum total distance from each houses to nearest mailboxes is |2-3| + |3-3| + |5-3| + |12-14| + |18-14| = 9.

 

Constraints:

  • 1 <= k <= houses.length <= 100
  • 1 <= houses[i] <= 104
  • All the integers of houses are unique.

Solutions

  • class Solution {
        public int minDistance(int[] houses, int k) {
            Arrays.sort(houses);
            int n = houses.length;
            int[][] g = new int[n][n];
            for (int i = n - 2; i >= 0; --i) {
                for (int j = i + 1; j < n; ++j) {
                    g[i][j] = g[i + 1][j - 1] + houses[j] - houses[i];
                }
            }
            int[][] f = new int[n][k + 1];
            final int inf = 1 << 30;
            for (int[] e : f) {
                Arrays.fill(e, inf);
            }
            for (int i = 0; i < n; ++i) {
                f[i][1] = g[0][i];
                for (int j = 2; j <= k && j <= i + 1; ++j) {
                    for (int p = 0; p < i; ++p) {
                        f[i][j] = Math.min(f[i][j], f[p][j - 1] + g[p + 1][i]);
                    }
                }
            }
            return f[n - 1][k];
        }
    }
    
  • class Solution {
    public:
        int minDistance(vector<int>& houses, int k) {
            int n = houses.size();
            sort(houses.begin(), houses.end());
            int g[n][n];
            memset(g, 0, sizeof(g));
            for (int i = n - 2; ~i; --i) {
                for (int j = i + 1; j < n; ++j) {
                    g[i][j] = g[i + 1][j - 1] + houses[j] - houses[i];
                }
            }
            int f[n][k + 1];
            memset(f, 0x3f, sizeof(f));
            for (int i = 0; i < n; ++i) {
                f[i][1] = g[0][i];
                for (int j = 1; j <= k && j <= i + 1; ++j) {
                    for (int p = 0; p < i; ++p) {
                        f[i][j] = min(f[i][j], f[p][j - 1] + g[p + 1][i]);
                    }
                }
            }
            return f[n - 1][k];
        }
    };
    
  • class Solution:
        def minDistance(self, houses: List[int], k: int) -> int:
            houses.sort()
            n = len(houses)
            g = [[0] * n for _ in range(n)]
            for i in range(n - 2, -1, -1):
                for j in range(i + 1, n):
                    g[i][j] = g[i + 1][j - 1] + houses[j] - houses[i]
            f = [[inf] * (k + 1) for _ in range(n)]
            for i in range(n):
                f[i][1] = g[0][i]
                for j in range(2, min(k + 1, i + 2)):
                    for p in range(i):
                        f[i][j] = min(f[i][j], f[p][j - 1] + g[p + 1][i])
            return f[-1][k]
    
    
  • func minDistance(houses []int, k int) int {
    	sort.Ints(houses)
    	n := len(houses)
    	g := make([][]int, n)
    	f := make([][]int, n)
    	const inf = 1 << 30
    	for i := range g {
    		g[i] = make([]int, n)
    		f[i] = make([]int, k+1)
    		for j := range f[i] {
    			f[i][j] = inf
    		}
    	}
    	for i := n - 2; i >= 0; i-- {
    		for j := i + 1; j < n; j++ {
    			g[i][j] = g[i+1][j-1] + houses[j] - houses[i]
    		}
    	}
    	for i := 0; i < n; i++ {
    		f[i][1] = g[0][i]
    		for j := 2; j <= k && j <= i+1; j++ {
    			for p := 0; p < i; p++ {
    				f[i][j] = min(f[i][j], f[p][j-1]+g[p+1][i])
    			}
    		}
    	}
    	return f[n-1][k]
    }
    

All Problems

All Solutions