Welcome to Subscribe On Youtube

1463. Cherry Pickup II

Description

You are given a rows x cols matrix grid representing a field of cherries where grid[i][j] represents the number of cherries that you can collect from the (i, j) cell.

You have two robots that can collect cherries for you:

  • Robot #1 is located at the top-left corner (0, 0), and
  • Robot #2 is located at the top-right corner (0, cols - 1).

Return the maximum number of cherries collection using both robots by following the rules below:

  • From a cell (i, j), robots can move to cell (i + 1, j - 1), (i + 1, j), or (i + 1, j + 1).
  • When any robot passes through a cell, It picks up all cherries, and the cell becomes an empty cell.
  • When both robots stay in the same cell, only one takes the cherries.
  • Both robots cannot move outside of the grid at any moment.
  • Both robots should reach the bottom row in grid.

 

Example 1:

Input: grid = [[3,1,1],[2,5,1],[1,5,5],[2,1,1]]
Output: 24
Explanation: Path of robot #1 and #2 are described in color green and blue respectively.
Cherries taken by Robot #1, (3 + 2 + 5 + 2) = 12.
Cherries taken by Robot #2, (1 + 5 + 5 + 1) = 12.
Total of cherries: 12 + 12 = 24.

Example 2:

Input: grid = [[1,0,0,0,0,0,1],[2,0,0,0,0,3,0],[2,0,9,0,0,0,0],[0,3,0,5,4,0,0],[1,0,2,3,0,0,6]]
Output: 28
Explanation: Path of robot #1 and #2 are described in color green and blue respectively.
Cherries taken by Robot #1, (1 + 9 + 5 + 2) = 17.
Cherries taken by Robot #2, (1 + 3 + 4 + 3) = 11.
Total of cherries: 17 + 11 = 28.

 

Constraints:

  • rows == grid.length
  • cols == grid[i].length
  • 2 <= rows, cols <= 70
  • 0 <= grid[i][j] <= 100

Solutions

Use dynammic programming, define dp[i][j1][j2]: The maximum cherries that both robots can take starting on the ith row, and column j1 and j2 of Robot 1 and 2 respectively.

  • class Solution {
        public int cherryPickup(int[][] grid) {
            int m = grid.length, n = grid[0].length;
            int[][][] f = new int[m][n][n];
            for (var g : f) {
                for (var h : g) {
                    Arrays.fill(h, -1);
                }
            }
            f[0][0][n - 1] = grid[0][0] + grid[0][n - 1];
            for (int i = 1; i < m; ++i) {
                for (int j1 = 0; j1 < n; ++j1) {
                    for (int j2 = 0; j2 < n; ++j2) {
                        int x = grid[i][j1] + (j1 == j2 ? 0 : grid[i][j2]);
                        for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1) {
                            for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2) {
                                if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i - 1][y1][y2] != -1) {
                                    f[i][j1][j2] = Math.max(f[i][j1][j2], f[i - 1][y1][y2] + x);
                                }
                            }
                        }
                    }
                }
            }
            int ans = 0;
            for (int j1 = 0; j1 < n; ++j1) {
                for (int j2 = 0; j2 < n; ++j2) {
                    ans = Math.max(ans, f[m - 1][j1][j2]);
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int cherryPickup(vector<vector<int>>& grid) {
            int m = grid.size(), n = grid[0].size();
            int f[m][n][n];
            memset(f, -1, sizeof(f));
            f[0][0][n - 1] = grid[0][0] + grid[0][n - 1];
            for (int i = 1; i < m; ++i) {
                for (int j1 = 0; j1 < n; ++j1) {
                    for (int j2 = 0; j2 < n; ++j2) {
                        int x = grid[i][j1] + (j1 == j2 ? 0 : grid[i][j2]);
                        for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1) {
                            for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2) {
                                if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i - 1][y1][y2] != -1) {
                                    f[i][j1][j2] = max(f[i][j1][j2], f[i - 1][y1][y2] + x);
                                }
                            }
                        }
                    }
                }
            }
            int ans = 0;
            for (int j1 = 0; j1 < n; ++j1) {
                for (int j2 = 0; j2 < n; ++j2) {
                    ans = max(ans, f[m - 1][j1][j2]);
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def cherryPickup(self, grid: List[List[int]]) -> int:
            m, n = len(grid), len(grid[0])
            f = [[[-1] * n for _ in range(n)] for _ in range(m)]
            f[0][0][n - 1] = grid[0][0] + grid[0][n - 1]
            for i in range(1, m):
                for j1 in range(n):
                    for j2 in range(n):
                        x = grid[i][j1] + (0 if j1 == j2 else grid[i][j2])
                        for y1 in range(j1 - 1, j1 + 2):
                            for y2 in range(j2 - 1, j2 + 2):
                                if 0 <= y1 < n and 0 <= y2 < n and f[i - 1][y1][y2] != -1:
                                    f[i][j1][j2] = max(f[i][j1][j2], f[i - 1][y1][y2] + x)
            return max(f[-1][j1][j2] for j1, j2 in product(range(n), range(n)))
    
    
  • func cherryPickup(grid [][]int) int {
    	m, n := len(grid), len(grid[0])
    	f := make([][][]int, m)
    	for i := range f {
    		f[i] = make([][]int, n)
    		for j := range f[i] {
    			f[i][j] = make([]int, n)
    			for k := range f[i][j] {
    				f[i][j][k] = -1
    			}
    		}
    	}
    	f[0][0][n-1] = grid[0][0] + grid[0][n-1]
    	for i := 1; i < m; i++ {
    		for j1 := 0; j1 < n; j1++ {
    			for j2 := 0; j2 < n; j2++ {
    				x := grid[i][j1]
    				if j1 != j2 {
    					x += grid[i][j2]
    				}
    				for y1 := j1 - 1; y1 <= j1+1; y1++ {
    					for y2 := j2 - 1; y2 <= j2+1; y2++ {
    						if y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i-1][y1][y2] != -1 {
    							f[i][j1][j2] = max(f[i][j1][j2], f[i-1][y1][y2]+x)
    						}
    					}
    				}
    			}
    		}
    	}
    	ans := 0
    	for j1 := 0; j1 < n; j1++ {
    		for j2 := 0; j2 < n; j2++ {
    			ans = max(ans, f[m-1][j1][j2])
    		}
    	}
    	return ans
    }
    
  • function cherryPickup(grid: number[][]): number {
        const m = grid.length;
        const n = grid[0].length;
        const f: number[][][] = new Array(m)
            .fill(0)
            .map(() => new Array(n).fill(0).map(() => new Array(n).fill(-1)));
        f[0][0][n - 1] = grid[0][0] + grid[0][n - 1];
        for (let i = 1; i < m; ++i) {
            for (let j1 = 0; j1 < n; ++j1) {
                for (let j2 = 0; j2 < n; ++j2) {
                    const x = grid[i][j1] + (j1 === j2 ? 0 : grid[i][j2]);
                    for (let y1 = j1 - 1; y1 <= j1 + 1; ++y1) {
                        for (let y2 = j2 - 1; y2 <= j2 + 1; ++y2) {
                            if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i - 1][y1][y2] !== -1) {
                                f[i][j1][j2] = Math.max(f[i][j1][j2], f[i - 1][y1][y2] + x);
                            }
                        }
                    }
                }
            }
        }
        let ans = 0;
        for (let j1 = 0; j1 < n; ++j1) {
            for (let j2 = 0; j2 < n; ++j2) {
                ans = Math.max(ans, f[m - 1][j1][j2]);
            }
        }
        return ans;
    }
    
    

All Problems

All Solutions