Welcome to Subscribe On Youtube

1447. Simplified Fractions

Description

Given an integer n, return a list of all simplified fractions between 0 and 1 (exclusive) such that the denominator is less-than-or-equal-to n. You can return the answer in any order.

 

Example 1:

Input: n = 2
Output: ["1/2"]
Explanation: "1/2" is the only unique fraction with a denominator less-than-or-equal-to 2.

Example 2:

Input: n = 3
Output: ["1/2","1/3","2/3"]

Example 3:

Input: n = 4
Output: ["1/2","1/3","1/4","2/3","3/4"]
Explanation: "2/4" is not a simplified fraction because it can be simplified to "1/2".

 

Constraints:

  • 1 <= n <= 100

Solutions

  • class Solution {
        public List<String> simplifiedFractions(int n) {
            List<String> ans = new ArrayList<>();
            for (int i = 1; i < n; ++i) {
                for (int j = i + 1; j < n + 1; ++j) {
                    if (gcd(i, j) == 1) {
                        ans.add(i + "/" + j);
                    }
                }
            }
            return ans;
        }
    
        private int gcd(int a, int b) {
            return b > 0 ? gcd(b, a % b) : a;
        }
    }
    
  • class Solution {
    public:
        vector<string> simplifiedFractions(int n) {
            vector<string> ans;
            for (int i = 1; i < n; ++i) {
                for (int j = i + 1; j < n + 1; ++j) {
                    if (__gcd(i, j) == 1) {
                        ans.push_back(to_string(i) + "/" + to_string(j));
                    }
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def simplifiedFractions(self, n: int) -> List[str]:
            return [
                f'{i}/{j}'
                for i in range(1, n)
                for j in range(i + 1, n + 1)
                if gcd(i, j) == 1
            ]
    
    
  • func simplifiedFractions(n int) (ans []string) {
    	for i := 1; i < n; i++ {
    		for j := i + 1; j < n+1; j++ {
    			if gcd(i, j) == 1 {
    				ans = append(ans, strconv.Itoa(i)+"/"+strconv.Itoa(j))
    			}
    		}
    	}
    	return ans
    }
    
    func gcd(a, b int) int {
    	if b == 0 {
    		return a
    	}
    	return gcd(b, a%b)
    }
    
  • function simplifiedFractions(n: number): string[] {
        const ans: string[] = [];
        for (let i = 1; i < n; ++i) {
            for (let j = i + 1; j < n + 1; ++j) {
                if (gcd(i, j) === 1) {
                    ans.push(`${i}/${j}`);
                }
            }
        }
        return ans;
    }
    
    function gcd(a: number, b: number): number {
        return b === 0 ? a : gcd(b, a % b);
    }
    
    
  • impl Solution {
        fn gcd(a: i32, b: i32) -> i32 {
            match b {
                0 => a,
                _ => Solution::gcd(b, a % b),
            }
        }
    
        pub fn simplified_fractions(n: i32) -> Vec<String> {
            let mut res = vec![];
            for i in 1..n {
                for j in i + 1..=n {
                    if Solution::gcd(i, j) == 1 {
                        res.push(format!("{}/{}", i, j));
                    }
                }
            }
            res
        }
    }
    
    

All Problems

All Solutions