Welcome to Subscribe On Youtube
1447. Simplified Fractions
Description
Given an integer n
, return a list of all simplified fractions between 0
and 1
(exclusive) such that the denominator is less-than-or-equal-to n
. You can return the answer in any order.
Example 1:
Input: n = 2 Output: ["1/2"] Explanation: "1/2" is the only unique fraction with a denominator less-than-or-equal-to 2.
Example 2:
Input: n = 3 Output: ["1/2","1/3","2/3"]
Example 3:
Input: n = 4 Output: ["1/2","1/3","1/4","2/3","3/4"] Explanation: "2/4" is not a simplified fraction because it can be simplified to "1/2".
Constraints:
1 <= n <= 100
Solutions
-
class Solution { public List<String> simplifiedFractions(int n) { List<String> ans = new ArrayList<>(); for (int i = 1; i < n; ++i) { for (int j = i + 1; j < n + 1; ++j) { if (gcd(i, j) == 1) { ans.add(i + "/" + j); } } } return ans; } private int gcd(int a, int b) { return b > 0 ? gcd(b, a % b) : a; } }
-
class Solution { public: vector<string> simplifiedFractions(int n) { vector<string> ans; for (int i = 1; i < n; ++i) { for (int j = i + 1; j < n + 1; ++j) { if (__gcd(i, j) == 1) { ans.push_back(to_string(i) + "/" + to_string(j)); } } } return ans; } };
-
class Solution: def simplifiedFractions(self, n: int) -> List[str]: return [ f'{i}/{j}' for i in range(1, n) for j in range(i + 1, n + 1) if gcd(i, j) == 1 ]
-
func simplifiedFractions(n int) (ans []string) { for i := 1; i < n; i++ { for j := i + 1; j < n+1; j++ { if gcd(i, j) == 1 { ans = append(ans, strconv.Itoa(i)+"/"+strconv.Itoa(j)) } } } return ans } func gcd(a, b int) int { if b == 0 { return a } return gcd(b, a%b) }
-
function simplifiedFractions(n: number): string[] { const ans: string[] = []; for (let i = 1; i < n; ++i) { for (let j = i + 1; j < n + 1; ++j) { if (gcd(i, j) === 1) { ans.push(`${i}/${j}`); } } } return ans; } function gcd(a: number, b: number): number { return b === 0 ? a : gcd(b, a % b); }
-
impl Solution { fn gcd(a: i32, b: i32) -> i32 { match b { 0 => a, _ => Solution::gcd(b, a % b), } } pub fn simplified_fractions(n: i32) -> Vec<String> { let mut res = vec![]; for i in 1..n { for j in i + 1..=n { if Solution::gcd(i, j) == 1 { res.push(format!("{}/{}", i, j)); } } } res } }