Welcome to Subscribe On Youtube

1443. Minimum Time to Collect All Apples in a Tree

Description

Given an undirected tree consisting of n vertices numbered from 0 to n-1, which has some apples in their vertices. You spend 1 second to walk over one edge of the tree. Return the minimum time in seconds you have to spend to collect all apples in the tree, starting at vertex 0 and coming back to this vertex.

The edges of the undirected tree are given in the array edges, where edges[i] = [ai, bi] means that exists an edge connecting the vertices ai and bi. Additionally, there is a boolean array hasApple, where hasApple[i] = true means that vertex i has an apple; otherwise, it does not have any apple.

 

Example 1:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,true,true,false]
Output: 8 
Explanation: The figure above represents the given tree where red vertices have an apple. One optimal path to collect all apples is shown by the green arrows.  

Example 2:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,false,true,false]
Output: 6
Explanation: The figure above represents the given tree where red vertices have an apple. One optimal path to collect all apples is shown by the green arrows.  

Example 3:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,false,false,false,false,false]
Output: 0

 

Constraints:

  • 1 <= n <= 105
  • edges.length == n - 1
  • edges[i].length == 2
  • 0 <= ai < bi <= n - 1
  • hasApple.length == n

Solutions

DFS.

  • class Solution {
        public int minTime(int n, int[][] edges, List<Boolean> hasApple) {
            boolean[] vis = new boolean[n];
            List<Integer>[] g = new List[n];
            Arrays.setAll(g, k -> new ArrayList<>());
            for (int[] e : edges) {
                int u = e[0], v = e[1];
                g[u].add(v);
                g[v].add(u);
            }
            return dfs(0, 0, g, hasApple, vis);
        }
    
        private int dfs(int u, int cost, List<Integer>[] g, List<Boolean> hasApple, boolean[] vis) {
            if (vis[u]) {
                return 0;
            }
            vis[u] = true;
            int nxtCost = 0;
            for (int v : g[u]) {
                nxtCost += dfs(v, 2, g, hasApple, vis);
            }
            if (!hasApple.get(u) && nxtCost == 0) {
                return 0;
            }
            return cost + nxtCost;
        }
    }
    
  • class Solution {
    public:
        int minTime(int n, vector<vector<int>>& edges, vector<bool>& hasApple) {
            vector<bool> vis(n);
            vector<vector<int>> g(n);
            for (auto& e : edges) {
                int u = e[0], v = e[1];
                g[u].push_back(v);
                g[v].push_back(u);
            }
            return dfs(0, 0, g, hasApple, vis);
        }
    
        int dfs(int u, int cost, vector<vector<int>>& g, vector<bool>& hasApple, vector<bool>& vis) {
            if (vis[u]) return 0;
            vis[u] = true;
            int nxt = 0;
            for (int& v : g[u]) nxt += dfs(v, 2, g, hasApple, vis);
            if (!hasApple[u] && !nxt) return 0;
            return cost + nxt;
        }
    };
    
  • class Solution:
        def minTime(self, n: int, edges: List[List[int]], hasApple: List[bool]) -> int:
            def dfs(u, cost):
                if vis[u]:
                    return 0
                vis[u] = True
                nxt_cost = 0
                for v in g[u]:
                    nxt_cost += dfs(v, 2)
                if not hasApple[u] and nxt_cost == 0:
                    return 0
                return cost + nxt_cost
    
            g = defaultdict(list)
            for u, v in edges:
                g[u].append(v)
                g[v].append(u)
            vis = [False] * n
            return dfs(0, 0)
    
    
  • func minTime(n int, edges [][]int, hasApple []bool) int {
    	vis := make([]bool, n)
    	g := make([][]int, n)
    	for _, e := range edges {
    		u, v := e[0], e[1]
    		g[u] = append(g[u], v)
    		g[v] = append(g[v], u)
    	}
    	var dfs func(int, int) int
    	dfs = func(u, cost int) int {
    		if vis[u] {
    			return 0
    		}
    		vis[u] = true
    		nxt := 0
    		for _, v := range g[u] {
    			nxt += dfs(v, 2)
    		}
    		if !hasApple[u] && nxt == 0 {
    			return 0
    		}
    		return cost + nxt
    	}
    	return dfs(0, 0)
    }
    

All Problems

All Solutions