Welcome to Subscribe On Youtube
1401. Circle and Rectangle Overlapping
Description
You are given a circle represented as (radius, xCenter, yCenter)
and an axis-aligned rectangle represented as (x1, y1, x2, y2)
, where (x1, y1)
are the coordinates of the bottom-left corner, and (x2, y2)
are the coordinates of the top-right corner of the rectangle.
Return true
if the circle and rectangle are overlapped otherwise return false
. In other words, check if there is any point (xi, yi)
that belongs to the circle and the rectangle at the same time.
Example 1:
Input: radius = 1, xCenter = 0, yCenter = 0, x1 = 1, y1 = -1, x2 = 3, y2 = 1 Output: true Explanation: Circle and rectangle share the point (1,0).
Example 2:
Input: radius = 1, xCenter = 1, yCenter = 1, x1 = 1, y1 = -3, x2 = 2, y2 = -1 Output: false
Example 3:
Input: radius = 1, xCenter = 0, yCenter = 0, x1 = -1, y1 = 0, x2 = 0, y2 = 1 Output: true
Constraints:
1 <= radius <= 2000
-104 <= xCenter, yCenter <= 104
-104 <= x1 < x2 <= 104
-104 <= y1 < y2 <= 104
Solutions
Solution 1: Mathematics
For a point $(x, y)$, its shortest distance to the center of the circle $(xCenter, yCenter)$ is $\sqrt{(x - xCenter)^2 + (y - yCenter)^2}$. If this distance is less than or equal to the radius $radius$, then this point is within the circle (including the boundary).
For points within the rectangle (including the boundary), their x-coordinates $x$ satisfy $x_1 \leq x \leq x_2$, and their y-coordinates $y$ satisfy $y_1 \leq y \leq y_2$. To determine whether the circle and rectangle overlap, we need to find a point $(x, y)$ within the rectangle such that $a = | x - xCenter | $ and $b = | y - yCenter | $ are minimized. If $a^2 + b^2 \leq radius^2$, then the circle and rectangle overlap. |
Therefore, the problem is transformed into finding the minimum value of $a = | x - xCenter | $ when $x \in [x_1, x_2]$, and the minimum value of $b = | y - yCenter | $ when $y \in [y_1, y_2]$. |
For $x \in [x_1, x_2]$:
-
If $x_1 \leq xCenter \leq x_2$, then the minimum value of $ x - xCenter $ is $0$; -
If $xCenter < x_1$, then the minimum value of $ x - xCenter $ is $x_1 - xCenter$; -
If $xCenter > x_2$, then the minimum value of $ x - xCenter $ is $xCenter - x_2$.
Similarly, we can find the minimum value of $ | y - yCenter | $ when $y \in [y_1, y_2]$. We can use a function $f(i, j, k)$ to handle the above situations. |
That is, $a = f(x_1, x_2, xCenter)$, $b = f(y_1, y_2, yCenter)$. If $a^2 + b^2 \leq radius^2$, then the circle and rectangle overlap.
-
class Solution { public boolean checkOverlap( int radius, int xCenter, int yCenter, int x1, int y1, int x2, int y2) { int a = f(x1, x2, xCenter); int b = f(y1, y2, yCenter); return a * a + b * b <= radius * radius; } private int f(int i, int j, int k) { if (i <= k && k <= j) { return 0; } return k < i ? i - k : k - j; } }
-
class Solution { public: bool checkOverlap(int radius, int xCenter, int yCenter, int x1, int y1, int x2, int y2) { auto f = [](int i, int j, int k) -> int { if (i <= k && k <= j) { return 0; } return k < i ? i - k : k - j; }; int a = f(x1, x2, xCenter); int b = f(y1, y2, yCenter); return a * a + b * b <= radius * radius; } };
-
class Solution: def checkOverlap( self, radius: int, xCenter: int, yCenter: int, x1: int, y1: int, x2: int, y2: int, ) -> bool: def f(i: int, j: int, k: int) -> int: if i <= k <= j: return 0 return i - k if k < i else k - j a = f(x1, x2, xCenter) b = f(y1, y2, yCenter) return a * a + b * b <= radius * radius
-
func checkOverlap(radius int, xCenter int, yCenter int, x1 int, y1 int, x2 int, y2 int) bool { f := func(i, j, k int) int { if i <= k && k <= j { return 0 } if k < i { return i - k } return k - j } a := f(x1, x2, xCenter) b := f(y1, y2, yCenter) return a*a+b*b <= radius*radius }
-
function checkOverlap( radius: number, xCenter: number, yCenter: number, x1: number, y1: number, x2: number, y2: number, ): boolean { const f = (i: number, j: number, k: number) => { if (i <= k && k <= j) { return 0; } return k < i ? i - k : k - j; }; const a = f(x1, x2, xCenter); const b = f(y1, y2, yCenter); return a * a + b * b <= radius * radius; }