Welcome to Subscribe On Youtube

1383. Maximum Performance of a Team

Description

You are given two integers n and k and two integer arrays speed and efficiency both of length n. There are n engineers numbered from 1 to n. speed[i] and efficiency[i] represent the speed and efficiency of the ith engineer respectively.

Choose at most k different engineers out of the n engineers to form a team with the maximum performance.

The performance of a team is the sum of its engineers' speeds multiplied by the minimum efficiency among its engineers.

Return the maximum performance of this team. Since the answer can be a huge number, return it modulo 109 + 7.

 

Example 1:

Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 2
Output: 60
Explanation: 
We have the maximum performance of the team by selecting engineer 2 (with speed=10 and efficiency=4) and engineer 5 (with speed=5 and efficiency=7). That is, performance = (10 + 5) * min(4, 7) = 60.

Example 2:

Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 3
Output: 68
Explanation:
This is the same example as the first but k = 3. We can select engineer 1, engineer 2 and engineer 5 to get the maximum performance of the team. That is, performance = (2 + 10 + 5) * min(5, 4, 7) = 68.

Example 3:

Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 4
Output: 72

 

Constraints:

  • 1 <= k <= n <= 105
  • speed.length == n
  • efficiency.length == n
  • 1 <= speed[i] <= 105
  • 1 <= efficiency[i] <= 108

Solutions

  • class Solution {
        private static final int MOD = (int) 1e9 + 7;
    
        public int maxPerformance(int n, int[] speed, int[] efficiency, int k) {
            int[][] t = new int[n][2];
            for (int i = 0; i < n; ++i) {
                t[i] = new int[] {speed[i], efficiency[i]};
            }
            Arrays.sort(t, (a, b) -> b[1] - a[1]);
            PriorityQueue<Integer> q = new PriorityQueue<>();
            long tot = 0;
            long ans = 0;
            for (var x : t) {
                int s = x[0], e = x[1];
                tot += s;
                ans = Math.max(ans, tot * e);
                q.offer(s);
                if (q.size() == k) {
                    tot -= q.poll();
                }
            }
            return (int) (ans % MOD);
        }
    }
    
  • class Solution {
    public:
        int maxPerformance(int n, vector<int>& speed, vector<int>& efficiency, int k) {
            vector<pair<int, int>> t(n);
            for (int i = 0; i < n; ++i) t[i] = {-efficiency[i], speed[i]};
            sort(t.begin(), t.end());
            priority_queue<int, vector<int>, greater<int>> q;
            long long ans = 0, tot = 0;
            int mod = 1e9 + 7;
            for (auto& x : t) {
                int s = x.second, e = -x.first;
                tot += s;
                ans = max(ans, tot * e);
                q.push(s);
                if (q.size() == k) {
                    tot -= q.top();
                    q.pop();
                }
            }
            return (int) (ans % mod);
        }
    };
    
  • class Solution:
        def maxPerformance(
            self, n: int, speed: List[int], efficiency: List[int], k: int
        ) -> int:
            t = sorted(zip(speed, efficiency), key=lambda x: -x[1])
            ans = tot = 0
            mod = 10**9 + 7
            h = []
            for s, e in t:
                tot += s
                ans = max(ans, tot * e)
                heappush(h, s)
                if len(h) == k:
                    tot -= heappop(h)
            return ans % mod
    
    
  • func maxPerformance(n int, speed []int, efficiency []int, k int) int {
    	t := make([][]int, n)
    	for i, s := range speed {
    		t[i] = []int{s, efficiency[i]}
    	}
    	sort.Slice(t, func(i, j int) bool { return t[i][1] > t[j][1] })
    	var mod int = 1e9 + 7
    	ans, tot := 0, 0
    	pq := hp{}
    	for _, x := range t {
    		s, e := x[0], x[1]
    		tot += s
    		ans = max(ans, tot*e)
    		heap.Push(&pq, s)
    		if pq.Len() == k {
    			tot -= heap.Pop(&pq).(int)
    		}
    	}
    	return ans % mod
    }
    
    type hp struct{ sort.IntSlice }
    
    func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) }
    func (h *hp) Pop() any {
    	a := h.IntSlice
    	v := a[len(a)-1]
    	h.IntSlice = a[:len(a)-1]
    	return v
    }
    func (h *hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
    

All Problems

All Solutions